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FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing simple 

and organized study content to all the learners. The SLMs are prepared on the 

framework of being mutually cohesive, internally consistent and structured as 

per the university‘s syllabi. It is a humble attempt to give glimpses of the 

various approaches and dimensions to the topic of study and to kindle the 

learner‘s interest to the subject 

 

We have tried to put together information from various sources into this book 

that has been written in an engaging style with interesting and relevant 

examples. It introduces you to the insights of subject concepts and theories and 

presents them in a way that is easy to understand and comprehend.  

 

We always believe in continuous improvement and would periodically update 

the content in the very interest of the learners. It may be added that despite 

enormous efforts and coordination, there is every possibility for some omission 

or inadequacy in few areas or topics, which would definitely be rectified in 

future. 

 

We hope you enjoy learning from this book and the experience truly enrich 

your learning and help you to advance in your career and future endeavours. 
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BLOCK-1:  ABSTRACT  ALGEBRA 

In this block we will go through 

Unit I  :In this unit we will discuss about Homomorphisms, 

Isomorphisms, Group Isomorphism various properties of those functions 

between groups which preserve the algebraic structure of their domain 

groups. 

Unit II: In this unit we will discuss about Fundamental Theorem of 

Homomorphism, Automorphisms  After understanding the concept of 

isomorphisms & result about the relationship between homomorphism‘s 

and quotient groups is the Fundamental Theorem of Homomorphism for 

groups 

Unit III: In this unit we will discuss about Groups, Symmetric Group, 

Cyclic Decomposition, Alternating Group, Cayley‘s Theorem,  

symmetric groups and their subgroups are called permutation groups The 

study of permutation groups and groups of transformations that gave the 

foundation to group theory a result by the mathematician Cayley, which 

says that every group is isomorphic to permutations group, This result is 

what makes permutation groups 

Unit IV: In this unit we will discuss about Direct Product of Groups, 

External Direct Product, Internal Direct Product, Introduction To Sylow 

Theorems, Groups of Order, Finite Abelian Groups All cyclic groups are 

finite abelian but a finite abelian group is not necessarily cyclic & All 

subgroups of a finite abelian group are normal. 

Unit V: In this unit we will discuss about algebra be attached in group 

actions In this unit getting  the information related to conjugate elements 

Unit VI: In this unit we will discuss about Cauchy-Riemann equations 

which under certain conditions provide the necessary and sufficient 

condition for the differentiability of a function of a complex variable at a 

point A very important concept of analytic functions which is useful in 

many application of the complex variable theory & discuss the concept 

of Cauchy's theorem     

Unit VI: In this unit we will discuss about the Sylow Theorems  provide 

a partial converse for Lagrange‘s Theorem: in certain cases they 

guarantee us subgroups of specific orders. These theorems yield a 

powerful set of tools for the classification of all finite non-abelian 

groups. 
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UNIT – 1: HOMOMORPHISM OF 

GROUPS 

STRUCTURE 

1.0 Objectives 

1.1 Introduction  

1.2 Homomorphisms 

1.3 Isomorphisms 

1.4 Group Isomorphism 

1.5 Let Us Sum Up 

1.6 Keywords 

1.7 Questions For Review 

1.8 Suggested Readings And References 

1.9 Answers To Check Your Progress 

1.0 OBJECTIVES 

After studying this unit, you should be able to: 

 Explain the concept of homomorphism  

 Describe Isomorphism 

1.1 INTRODUCTION 

In this unit, we will discuss various properties of those functions between 

groups which preserve the algebraic structure of their domain groups. 

These functions are called group Homomorphisms. This term was 

introduced by the mathematician Klein in 1983 

In this unit, you will also get an idea about a very important 

mathematical ideaisomorphism 

1.2 HOMOMORPHISMS 

Let us start our study of functions from one group to another with an 

example. 

Consider the groups  ( Z, f )  and  (  { 1, - 1 } , ).If we define 
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f : Z { 1, –1 }  by f ( n )  =  

then you can see that f ( a + b )  = f ( a ) .f ( b )   a, . What we 

have just seen is an example of a homomorphism, a function that 

preserves the algebraic structure of its domain. 

Definition: Let  ( G1, *1 )  and  ( G2,*2 )  be two groups. A mapping f : 

G1 — G2 is said to be a group homomorphism  ( or just a 

homomorphism ) , if 

f ( x *1 y )  = f ( x )  *2 f ( y )   x,  G1.  

Note that a homomorphism f from G1 to G2 carries the product x *1 y in 

G1 to the product 

f ( x )  *2 f ( y )  in G2. 

Note: The word ‗homomorphism‘ is derived from two Greek words 

‗homos‘, meaning ‗link‘, and ‗morphe‘, meaning ‗form‘. 

Let us define two sets related to a given homomorphism. 

Definition: Let  ( G1, *1 )  and  ( G2, *2 )  be two groups and f : G1  

G2 be a homomorphism. Then we define 

 ( i )  the image of f to be the set 

 Im f =  { f ( x )  1 x  G1 } . 

 ( ii )  the kernel of  f to be the set 

 Ker f =  { x G1 | f ( x )  = e2 } , where e2 is the identity of G2. 

Note that Im f  G2, and Ker f = f-1  (  { e2 }  )   G1. 

 Example: Consider the two groups  ( R, + )  and  ( R*,. ) . Show 

that the map exp :  ( R, + )    ( R*,.)  : exp ( r )  = er is a group 

homomorphism. Also find Im exp and Ker exp. 

Solution: For any r1, r2  R, we know that  

:. exp ( rl + r2 )  = exp ( r1 ) .exp ( r2 ) .` 

Hence, exp is a homomorphism from the additive group of real numbers 

to the multiplicative group of non-zero real numbers. 

1, if n is even

1, if n is odd,




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Now, Im exp =  { exp ( r )  | r R }  =  { er | r  R } , 

Also, Ker exp =   R | er = l }  =  { 0 } . 

Note that examples takes the identity 0 of R to the identity 1 of R*. 

example also carries the additive inverse – r of r. to the multiplicative 

inverse of exp  ( r ) . 

 Example: Consider the groups  ( R, + )  and  ( C, + )  and define f :  

( C, +   ( R, + )  by f ( x + iy )  = x, the real part of x + iy. Show that 

f is a homomorphism. What are Im f and Ker f? 

Solution: Take any two elements a + ib and c + id in C. Then, 

f (  ( a + ib )  +  ( c + id )  )  = f (  ( a + c )  + i ( b + d )  )  = a + c = f ( a + 

ib )  + f ( c + id )  

Therefore, f is a group homomorphism. 

Imf =  { f ( x + iy )  | x, y  R  }  =  {  x | x  R  )  = R. 

So, f is a surjective function 

Ker f =  {  x + iy  C | f  (  x + iy  )  = 0  }  =  {  x + iy  C | x = 0  }  

        =  {  iy | y E R  } , the set of purely imaginary numbers. 

Note that f carries the additive identity of C to the additive identity of R 

and  (  – z )  to – f ( z ) , for any z  C. 

In Examples 1 and 2 we observed that the homomorphism‘s carried the 

identity to the identity and the inverse to the inverse. In fact, these 

observations can be proved for any group homomorphism. 

Theorem: Let f ;  ( G1, *1 )    ( G2, *2 )  be a group homomorphism. 

Then 

 ( a )  f ( el )  = e2, where e1 is the identity of G1 and e2 is the identity 

of G2. 

 ( b )  f ( x-1 )  = [f ( x ) ]-1 for all x in G1. 

Proof:  ( a )  Let x  G1. Then we have e1 * 1x = x. Hence, 

f ( x )  = f ( el *1 x )  = f ( e1 )  *2 f ( x ) , since f is a homomorphism. 

But 
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f ( x )  = e2 *2 f ( x )  in G2. 

Thus, f ( e1 )  *2 f ( x ) = e2 *2 f ( x ) . 

So, by the right cancellation law in G2, f ( e1 )  =e2. 

 ( b )  Now, for any x  G1, f ( x )  *2 f ( x-1 )  = f ( x *1x-1 )  = f ( e1 )  

= e2. 

Similarly, f ( x-1 )  *2 f ( x )  = e2. 

Hence, f ( x-1 )  = [f ( x ) ]-1   x E G1.   

Note that the converse of Theorem 1 is false. That is, if f : G1  G2 is a 

function such that f ( e1 )  = e2 and [f ( x ) ]-1 = f ( x-l )  = f ( x-1 )   x 

G1,  then f need not be a homomorphism.  

For example, consider f : Z  Z : f ( 0 )  = 0 and , 

 

Since f ( l + 1 )   f ( 1 )  + f ( l ) , f is not a homomorphism. But f ( e1 )  

= e2 and f ( n )  = - f ( - n )   n  Z. 

Let us look at a few more examples of homomorphism‘s now. We can 

get one important class of homomorphism‘s from quotient groups. 

 Example: Let H  G. Consider the map p : G  G/H : p ( x )  = 

Hx. Show that p is a homomorphism. Also show that p is onto. What is 

Ker p? 

Solution: For x, y  G, p ( xy )  = Hxy = Hx Hy = p ( x )  p ( y ) . 

Therefore, p is a homomorphism. 

Now, Im p =  {  p ( x )   (  x  G }  =  (  Hx | x  G  }  = G/H. Therefore, 

p is onto. 

 Ker p =  {  x  G | p ( x )  = H  ) .  ( Remember, H is the identity of 

G/H. )  

 =  (  x  G | H x = H  }  

 =  {  x  G | x H  ) , by theorem. 

n 1 n 0
f(n)

n 1 n 0

  
 

  


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 = H. 

In this example you can see that Ker p  G. You can also check that 

Theorem 1 is true here. 

Example: Let H be a subgroup of a group G. Show that the map i : H  

G, i ( h )  = h is a homomorphism. This function is called the inclusion 

map. 

Solution: Since i ( h1 h2 )  = h1 h2 = i ( h1 ) i ( h2 )   h1, h2  H. i is a 

group homomorphism. 

Let us briefly look at the inclusion map in the context of symmetric 

groups. Consider two natural numbers m and n, where m I n. 

Then, we can consider Sm  Sn, where any  Sm, written as 

 is considered to be the same as 

  Sn, i.e.,  ( k )  

. 

Then we can define an inclusion map i : Sm  Sr. 

For example, under i : S3  S4,  ( 1 2 )  goes to  

We will now prove some results about homomorphisms  .Henceforth, for 

convenience, we shall drop the notation for the binary operation, and 

write a * b as ab. 

Now let us look at the composition of two homomorphisms. Is it a 

homomorphism? Let us see.‘ 

Theorem: If f : G1  G2 and g : G2  G3 are two group 

homomorphisms, then the composite map g . f : G1  G3 is also a group 

homomorphism. 

Proof: Let x. y  G. Then 

g o f ( xy )  = g ( f ( x : y )  )  

 = g ( f ( x ) f ( y ) , since f is a homomorphism. 





1 2 .... m
,

....(1) (2) (m)

 
 
   

1 2 .... m m 1 .... n

.... m 1 .... n(1) (2) (m)

 
 

   

1 2 3 4
.

2 1 4 4

 
 
 
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 = g ( f ( x )  )  g ( f ( g )  ) , since g is a homomorphism. 

 = g o f ( x ) .g o f ( y ) . 

Thus g, f is a homomorphism. 

Theorem: Let f : G1  G2 be a group homomorphism. Then 

 ( a )  Ker f is a normal subgroup of G1. 

 ( b )  Im f is a subgroup of G2. 

Proof:  ( a )  Since [ ( e1 )  = e2, e1  Ker f.  Ker f . 

Now, if x, y  Ker f, then f ( x )  = e2 and f ( y )  = e2. 

 f ( xy-1 )  = f ( x )  f ( y-1 )  = f ( x )  [f ( y ) ]-1 = e2. 

xy-1  Ker f. 

Therefore, by Theorem 1, Ker f  G1. Now, for any y  G1 and x E Ker 

f, 

f ( y-1xy )  = f ( y-1 )  f ( x ) f ( y )  

  = [f ( y ) ]-1e2f ( y ) , since f ( x )  = e2 and by Theorem 1 

  = e2. 

 Ker f  G1. 

 ( b )  Im f , since f ( el )  E Im f. 

Now, let x2, y2  Im f. Then x1, y1  G1 such that f ( x1 )  = x2 and f ( 

y1 )  = y2. 

 x2y2-1 = f ( x1 )  f ( y1-1 )  = f ( x1y1-1 ) Imf. 

 Im f  G2. 

Using this result, we can immediately see that the set of purely imaginary 

numbers is a normal subgroup of C. 

Consider  :  ( R, + )    ( C*,. )   ( x )  = cos x + i sin x. We have seen 

that ( x + y )   ( x )  ( y ) , that is,  is a group homomorphism. 

Now  ( x )  = 1 iff x = 2n for some n  Z . Thus, by Theorem 3, Ker 


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=  ( 2 n | n  Z )  is a normal subgroup of  ( R. + ) . Note that this is 

cyclic, and 2n is a generator. 

Similarly, Im  is a subgroup of C*. This consists of all the complex 

numbers with absolute value 1, i.e., the complex numbers on the circle 

with radius 1 unit and centre  ( 0, 0 ) . 

You may have noticed that sometimes the kernel of a homomorphism is  

{ e }  and sometimes it is a large subgroup. Does the size of the kernel 

indicate anything? We will prove that a  homomorphism is 1 – 1 iff its 

kernel is  { e } . 

Theorem: Let f : G1  G2 be a group homomorphism. Then f is 

injective iff Ker f =  { e1 } , where e1 is the identity element of the group 

G1. 

Proof: Firstly, assume that f is injective. Let x  Ker f. Then f ( x )  = e2, 

i.e., f ( x )  = f ( e1 ) . But f is 1 – 1.  x = e1. 

Thus, Kerf =  { e1 } . 

Conversely, suppose Ker f =  { e1]. Let x, y  G1 such that 

f ( x )  = f ( y ) . Then f ( xy-1 )  = f ( x )  f ( y-1 )  

     = f ( x )  [f ( y ) ]-1 = e2. 

 xy-1  Ker f =  { e1 } .  xy-1 = e1 and x = y. 

This shows that f is injective. 

So, by using Theorem 4, we can immediately say that any inclusion i : B 

 G is 1-1, since 

Ker i =  { e } . 

Let us consider another example. 

 Example: Consider the group T of translations of R2. We define a 

map   ( R2 +  )    ( T, o )  ….  ( a, b )  = fa, b. Show that  is an onto 

homomorphism, which is also 1-1. 

Solution: For  ( a, b ) ,  ( c, d )  in R*, we have seen that 

fa+c,h+d = fa,b o fc.d 
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  (  ( a, b )  +  ( c, d )  )  =  ( a, b )  o  ( c, d ) . 

Thus, , is a homomorphism of groups. 

Now, any element of T is -f ( a, b ) . Therefore is surjective. We now 

show that  is also injective. 

Let  ( R, b )   Ker . Then $ ( a, b )  = f0, 0 

i.e., fa, b= f0,0 

 fa,b ( 0, 0 )  = f0, 0  ( 0, 0 ) , 

i.e.,  ( a, b )  =  ( 0, 0 )  

Ker  =  { 1  ( 0, 0 )  }  

 is 1-1. 

So we have proved that f is a homomorphism, which is bijective. 

And now let us look at a very useful property of a homomorphism that is 

surjective. 

Theorem: Iff : G1  G2 is an onto group homomorphism and S is a 

subset that generates G1, then f ( S )  generates G2. 

Proof: We know that 

G1 = < S > =  {  | m  N, x1  S, r1  Z for all i ) . We will show that 

G2 = < f ( S )  > 

Let x  G2, Since f is surjective, there exists y  G1 such that f ( y )  = 

x. Since y  G1, y =  for some m  N, where xi  S and ri  Z,  1  i  

m. 

Thus,x  = f  ( y )  =   =  since f is a homomorphism. 

 x  < f ( S )  >. since f ( x1 )   f ( S )  for every i = 1, 2, ..., r. 

Thus G2 = < f ( S )  >. 

So far you have seen examples of various kinds of homomorphisms-

injective, surjective and bijective. Let us now look at bijective 

homomorphism in particular. 

Check Your progress-1 
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1. Let H be a subgroup of a Group G. Then H  G, i ( h )  = h is a 

homomorphism. This function is called the ................. 

 ( a ) inclusion map  ( b )  normal function 

 ( c ) cyclic  ( d )  abelian 

2. gof  ( x, y )  is equal to: 

 ( a ) gof ( x ) . gof ( y )   ( b )  gof ( x )  + gof ( y )  

 ( c ) gof ( x-1 ) .gof ( y-1 )   ( d )  gof ( x )  . gof ( y-1 )  

 
 

1.3 ISOMORPHISMS 

Definition: Let G1 and G2 be two groups. A homomorphism f : G1  

G2 is called an isomorphism if f is 1-1 and onto. 

In this case we say that the group G1 is isomorphic to the group G2 or 

G1 and G2 are isomorphic. We denote this fact by G1  G2. 

An isomorphism of a group G onto itself is called an automorphism of G. 

For example, the identity‘ function IG : G  G : IG ( x )  = x is an 

automorphism. 

Note: The word ‗isomorphisms‘ is derived from the Greek word 

‗ISOS‘ meaning 

‗equal‘. 

Let us look at another example of an isomorphism. 

Example: Consider the set G =  

Then G is a group with respect to matrix addition. 

Show that f : G  C : f  = a + ib is an isomorphism. 

Solution: Let us first verify that f is a homomorphism. Now, for any two 

elements 

 

a b
a, b R .

ab

   
     

a b

ab

  
    

a cb d
and in G,

a cb d

   
       
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=  ( a + ib )  +  ( c + id )  

=  

Therefore, f is a homomorphism. 

Now, Ker f =  

Therefore, by Theorem 4, f is 1-1. 

Finally, since Im f = C. f is surjective 

Therefore, f is an isomorphism. 

We would like to make an important remark now. 

Remark: If G1 and G2 are isomorphic groups, they must have the same 

algebraic structure and satisfy the same algebraic properties. For 

example, any group isomorphic to a finite group must be finite and of the 

same order. Thus, two isomorphic groups are algebraically 

indistinguishable systems. 

The following result is one of the consequences of isomorphic groups 

being algebraically alike 

Theorem: If f : G  H is a group isomorphism and Y  G, then < x > 

< f  ( x ) > , 

Therefore. 

 ( i )  if s is of finite order, then o ( x )  = o ( f ( s )  ) . 

 ( ii )  if x is of infinite order, so is f ( x ) . 

Proof: If we restrict f to any subgroup K of G, we have the function f | K 

; K  f ( K ) , Since f is bijective, sc is its restriction f | k ; k  f ( K )  for 

any subgroup K of G. In particular, for any x  G, 

< x >  f ( < x > )  = < f ( x )  >, 

a c a cb d b d
r f (a c) i(b d)

a c a cb d (b d)

       
                     

a cb d
f f

a cb d

      
             

a a 0 0b b
f a ib 0 a 0,b 0

a a 0 0b b

               
                                



Notes 

17 

Now if x has finite order, then o ( x )  = o ( < x > )  = o ( < f ( x )  > )  = o 

( f ( x )  ) , proving  ( i )  

To prove  ( ii )  assume hat x is of infinite order. Then < x > is an infinite 

group. 

Therefore, < f ( x )  > is an infinite group, and hence, f ( x )  is of infinite 

order. So, we have proved  ( ii ) . 

Example: Show that  ( R*,. )  is not isomorphic to  ( C*,. ) . 

 

Solution: Suppose they are isomorphic, and f : C* — R* is an 

isomorphism. Then 

o ( i )  = o ( f ( i )  ) , by Theorem 6, Now o ( i )  = 4.  o ( f ( i )  )  = 4. 

However, the order of any real number different from ±1 is infinite: and 

o ( 1 )  = 1, o ( –1 )  = 2. 

So we reach a contradiction. Therefore, our supposition must be wrong. 

That is, R* and C* are not isomorphic. 

You must have noticed that the definition of an isomorphism just says 

that the map is bijective, i.e., the inverse map exists. It does not tell us 

any properties of the inverse. The next result does so. 

Theorem: If f : G1  G2 is an isomorphism of groups, then f-1 : G2  

G is also an isomorphism. 

Proof: You know that f-1 is bijective. So, we only need to show that f-1 

is a homomorphism. Let a‘, b‘  G2 and a = f-1  ( a‘ ) , b = f-1  ( b‘ ) . 

Then f ( a ) = a‘ and f ( b ) = b‘. 

Therefore, f ( ab )  = f ( a )  f ( b )  = a‘b‘. On applying f-1, we get 

f-1  ( a‘b‘ )  = ab = f-1  ( a‘ )  f-l  ( b‘ ) , Thus, 

f-1  ( a‘b‘ )  = f-1  ( a‘ )  f-1 ( b‘ )  for all a‘, b‘  G2. 

Hence, f-1 is an isomorphism. 

From Theorem 7 we can immediately say that 

-1 : T  R2 : -1 ( fa,b, )  =  ( a, b )  is an isomorphism. 



Notes   

18 

Theorem says that if GI  G2, then G2 G1. We will be using this result 

quite often. 

Check Your progress-2 

3. An isomorphism of a group G onto itself is called an ___________of 

G. 

a. automorphism 

b. isomorphic 

c. homomorphism 

d. Non of the above 

4. If f : G1  G2 is an isomorphism of groups, then f-1 : G2  G is 

also an __________. 

a. automorphism 

b. isomorphic 

c. homomorphism 

d. Non of the above 

 

1.4 GROUP ISOMORPHISM 

In abstract algebra, a group isomorphism is a function between two 

groups that sets up a one-to-one correspondence between the elements of 

the groups in a way that respects the given group operations. If there 

exists an isomorphism between two groups, then the groups are called 

isomorphic. From the standpoint of group theory, isomorphic groups 

have the same properties and need not be distinguished. 

Definition and Notation 

Given two groups  ( G, * )  and  ( H,  ) , a group isomorphism from ( G, * 

)  to  ( H,  )  is a bijective group homomorphism from G to H. Spelled 

out, this means that a group isomorphism is a bijective function f : G  

H such that for all u and v in G it holds that 

f ( u * v )  = f ( u )   f ( v ) . 
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The two groups  ( G, * )  and  ( H,  )  are isomorphic if an isomorphism 

exists. This is written: 

 ( G, * )    ( H,  )  

Often shorter and more simple notations can be used. Often there is no 

ambiguity about the group operation, and it can be omitted: 

G  H 

Sometimes one can even simply write G = H. Whether such a notation is 

possible without confusion or ambiguity depends on context. For 

example, the equals sign is not very suitable when the groups are both 

subgroups of the same group. 

Conversely, given a group  ( G, * ) , a set H, and a bijection f : G  H, 

we can make H a group 

 ( H,  )  by defining 

f ( u )   f ( v )  = f ( u * v ) . 

If H = G and  = * then the bijection is an automorphism  ( q.v. )  

Intuitively, group theorists view two isomorphic groups as follows: For 

every element g of a group G, there exists an element h of H such that h 

‗behaves in the same way‘ as g  ( operates with other elements of the 

group in the same way as g ) . For instance, if g generates G, then so does 

h. This implies in particular that G and H are in bijective correspondence. 

So the definition of an isomorphism is quite natural. 

An isomorphism of groups may equivalently be defined as an invertible 

morphism in the category of groups, where invertible here means has a 

two-sided inverse. 

 Examples:  

1. The group of all real numbers with addition,  ( , + ) , is isomorphic 

to the group of all positive real numbers with multiplication  ( +, × 

) : 

 ( , + )   ( +, × )  

 via the isomorphism  

f ( x )  = ex 
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  ( see exponential function ) . 

2. The group  of integers  ( with addition )  , and 

the factor group  is isomorphic to the group S1 of complex 

numbers of absolute value 1  ( with multiplication ) : 

 S1 

 An isomorphism is given by 

f ( x +  )  = e2x1 

 for every x in . 

3. The Klein four-group is isomorphic to the direct product of two 

copies of 2 =  

 ( see modular arithmetic ) , and can therefore be written . 

Another notation is Dih2, because it is a dihedral group. 

4. Generalizing this, for all odd n, Dih2n is isomorphic with the direct 

product of Dihn and Z2. 

5. If  ( G, * )  is an infinite cyclic group, then  ( G, * )  is isomorphic to 

the integers  ( with the addition operation ) . From an algebraic point 

of view, this means that the set of all integers  ( with the addition 

operation )  is the ‗only‘ infinite cyclic group. 

Some groups can be proven to be isomorphic, relying on the axiom of 

choice, but the proof does not indicate how to construct a concrete 

isomorphism. 

1. The group  , + )  is isomorphic to the group  ( , + )  of all 

complex numbers with addition. 

2. The group  ( *, · )  of non-zero complex numbers with 

multiplication as operation is isomorphic to the group S1 mentioned 

above. 

Properties  

 The kernel of an isomorphism from  ( G, * )  to  ( H,  ) , is always  { 

eG }  where eG is the identity of the group  ( G, * )  
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 If  ( G, * )  is isomorphic to  ( H,  ) , and if G is abelian then so is H. 

 If  ( G, * )  is a group that is isomorphic to  ( H,  )  [where f is the 

isomorphism], then if a belongs to G and has order n, then so does f 

( a ) . 

 If  ( G, * )  is a locally finite group that is isomorphic to  ( H,  ) , 

then  ( H,  )  is also locally finite. 

 We also go through that ‗group properties‘ are always preserved by 

isomorphisms. 

Cyclic Groups 

All cyclic groups of a given order are isomorphic to  ( n, +n ) . 

Let G be a cyclic group and n be the order of G. G is then the group 

generated by < x > =  { e,x,..., 

xn – 1 } . We will show that 

  G   ( n, +n )  

Define 

 : G n =  { 0, 1,..., n – 1 } , so that  ( xa )  = a. Clearly,  is 

bijective. 

Then 

 ( xa . xb )  =  ( xa+b )  = a + b =  ( xa )  + n ( xb )  which proves 

that G n, +n. 

Consequences 

From the definition, it follows that any isomorphism f : G  H will map 

the identity element of G to the identity element of H, 

  f ( eG )  = eH 

that it will map inverses to inverses, 

  f ( u–1 )  = [f ( u ) ]–1 

and more generally, nth powers to nth powers, 

  f ( un )  = [f ( u ) ]n 
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for all u in G, and that the inverse map f–1 : H  G is also a group 

isomorphism. 

The relation ―being isomorphic‖ satisfies all the axioms of an 

equivalence relation. If f is an isomorphism between two groups G and 

H, then everything that is true about G that is only related to the group 

structure can be translated via f into a true ditto statement about H, and 

vice versa. 

Check Your progress-3 

5. Let f : G1  G2 be a group homomorphism thus her f is a ................. 

of G. 

 ( a ) subgroup  ( b ) normal 

 ( c ) cyclic  ( d ) abelian 

6. If  ( G, * )  is isomorphic to  ( H,  ) , and if G is abelian then so is. 

 ( a ) H  ( b ) G 

 ( c ) Both H & G  ( d ) Non of the above 

 

1.5 LET US SUM UP     

In this unit we have discussed the definition and example of a group 

homomorphism. Let f : G1  G2 be a group homomorphism. Then f ( e1 

)  = e2, [f ( x ) ]-1 = f ( x-1 ) , Im f  G2, Ker f  G1. 

We have also discussed a homomorphism is 1-1 iff its kernel is the trivial 

subgroup. The definition and examples of a group isomorphism. 

Two groups are isomorphic if they have exactly the same algebraic 

structure. 

Lastly we have discussed the composition of group homomorphisms  

(isomorphisms )  is a group homomorphism  ( isomorphism ) . 

1.6 KEYWORDS 

1. Homomorphism: Homomorphism is derived from two Greek 

words ‗homos‘, meaning ‗link‘, and ‗morphe‘, meaning ‗form‘. 
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2. Inclusion map: Let H be a subgroup of a group G. Show that the 

map i: H  G, i ( h )  = h is a homomorphism. This function is 

called the inclusion map. 

 

1.7 QUESTIONS FOR REVIEW 

1.  Show that f :  ( R*,. )    ( R, 4 )  : f ( x )  = inx, the natural logarithm 

of x, is a group homomorphism. Find Ker f and Im f also. 

2. Is f :  ( GL3 ( R ) 3, )    ( w*,. )  : f ( A )  = det ( A )  a 

homomorphism? If so, obtain Ker f and Im f. 

3. Define the natural homomorphism p from S3 to S3/A3. Does  ( 1 2 )  

E Ker p? Does  ( 1 2 )  E 

Im p? 

4. Let S = [z  C| |z| = 1 } . 

 Define f :  ( R, + )    ( S,. )  L f ( x )  = eInx, where n is a fixed 

positive integer. Is f a homomorphism? If so find Ker f. 

5.  Define Inclusion map by giving a suitable example. 

1.8 SUGGESTED READINGS AND 

REFERENCES 

1. Thomas W Judson  ( 2013 ) . Abstract Algebra: Theory and 

Applications. Orthogonal Publishing. 

2. Paul B. Garrett  ( 2007 ) . Abstract Algebra. Chapman and Hall/CRC. 

3. Vijay K Khanna  ( 2017 ) .A Course in Abstract Algebra Fifth 

Edition. Vikas Publishing House  

4. LALJI PRASAD  ( 2016 ) . Modern Abstract Algebra. Paramount 

Publication 

5. Stephen Lovett  ( 2016 ) . Abstract Algebra: Structures and 

Applications. Chapman and Hall/CRC 

1.9 ANSWERS TO CHECK YOUR 

PROGRESS 
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1.  ( a )   ( answer for Check your Progress-1 Q.1 )  

2.  ( a )   ( answer for Check your Progress-1 Q.2 )  

3.  ( a )   ( answer for Check your Progress-2 Q.3 )  

4.  ( b )   ( answer for Check your Progress-2 Q.4 )  

5.  ( b )   ( answer for Check your Progress-3 Q.5 )  

6.  ( a )   ( answer for Check your Progress-3 Q.6 )  
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UNIT - 2: HOMOMORPHISM 

THEOREM  

STRUCTURE 

2.0 Objectives 

2.1 Introduction 

2.2 Fundamental Theorem of Homomorphism 

2.3 Automorphisms 

2.4 Let Us Sum Up 

2.5 Keywords 

2.6 Questions For Review 

2.7 Suggested Readings And References 

2.8 Answers To Check Your Progress 

2.0 OBJECTIVES 

After studying this unit, you should be able to: 

 Discuss fundamental theorem of homomorphism  

 Explain the concept of automorphism 

2.1 INTRODUCTION 

After understanding the concept of isomorphisms. Let us prove some 

result about the relationship between homomorphisms and quotient 

groups. The first result is the Fundamental Theorem of Homomorphism 

for groups. It is called ‗fundamental‘ because a lot of group theory 

depends upon this result. This result is also called the first isomorphism 

theorem. 

 

2.2 FUNDAMENTAL THEOREM OF 

HOMOMORPHISM 

Theorem 1  ( Fundamental Theorem of Homomorphism ) : Let G1 

and G2 be two groups and f : G1  G2 be a group homomorphism. Then 
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G1/Ker f  Im f. 

In particular, if f is onto, then G1/Ker f  G2. 

Proof: Let Ker f = H. Note that H  G1. Let us define the function 

 : G1/H  Im f :   ( Hx )  = f ( x ) . 

At first glance it seems that the definition of  depends on the coset 

representative. But we 

will show that if x, y  G1 such that Hx = Hy, then  ( Hx )  =  ( Hy ) 

. This will prove that  is a 

well-defined function. 

Now, Hx = Hy  xy-1  H = Ker f  f ( xy-1 )  = e2, the identity of 

G2. 

 f ( x ) [f ( y ) ]-1 = e2 f ( x )  = f ( y ) . 

 ( Hx )  =  ( HY ) . 

Therefore, y is a well-defined function, 

Now, let us check that  is a homomorphism. For Hx, 1/H, 

 ( Hx )  ( Hy )  )  =  ( Hxy )  

 = f ( xy )  

 = f ( x )  f ( y ) , since f is a homomorphism. 

 =  ( H )   ( HY )  

Therefore,  is a group homomorphism. 

Next, let us see whether  is bijective or not. 

Now,  ( Hx )  =  ( Hy )  for Hx, HY in G1/H 

 f ( x )  = f ( y )  

 f ( x )  [f ( y ) l-1 = e2 

 f ( xy1 )  = e2 

 xy-1  Ker f = H. 


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 Hx = Hy 

Thus, , is 1-1. 

Also, any element of Im f is f ( x )  =  ( Hx ) , where x  G1. 

 Im  = Im f. 

So, we have proved that  is bijective, and hence, an isomorphism. Thus, 

G1/Ker f = Im f. 

Now, if f is surjective, Im f = G2. Thus, in this case G1/Ker f  G2. 

The situation in Theorem  can be shown in the following Figure 2.1 

 

Figure : The situation of Fundamental Theorem of Homomorphism 

Here, p is the natural homomorphism. 

The diagram says that if you first apply p, and then , to the elements of 

G1, it is the same as applying f to them. That is, 

 p = f. 

Also, note that Theorem  says that two elements of G1 have the same 

image under f iff they belong to the same coset of Ker f. 

Let us look at a few examples. 

One of the simplest situations we can consider is IG : G  G. On 

applying Theorem  here, we see that G/ { e }   G. We will be using this 

identification of G/ { e )  and G quite often. 

 Example: Prove that C/R  R. 

Solution: Define f : C  R : f ( a + ib )  = b. Then f is a homomorphism, 

Ker f = R and Im f = R. Therefore, on applying Theorem 1 we see that 

C/R  R. 
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 Example: Consider f : Z   (  { 1, - 1 ) ,. )  :  

At the beginning, you saw that f is a homomorphism. Obtain Ker f and 

Im f. What does Theorem 1 say in this case? 

Solution: Let Ze and Zo denote the set of even and odd integers, 

respectively. Then 

Ker f =  { n  Z | f ( n )  = 1  }  = Z, 

Im f =  { f ( n )  | n  Z  )  =  {  l , – 1 }  

Thus, by Theorem 1, Z/Z,   {  1, - 1  } . 

This also tells us that o ( Z/Ze )  = 2. The two cosets of Ze in Z are  Ze 

and *. 

  {  Ze, Zo  }    {  1, -1  } . 

 Example: Show that GL2 ( R ) /SL2 ( R )   R*, where SL2 ( R )  =  

{ A  GL2 ( R )  | det  ( A )  = 1  } ., 

Solution: We know that the function 

f : GL2 ( R )   R* : f ( A )  = der ( A )  is a homomorphism. Now, Ker f 

= SL2 ( R ) . 

Also, Im f = R*, since any r  R* can be written as det  

Thus, using Theorem 1, GL2 ( R ) /SL2 ( R )   R*. 

Now-we will use the Fundamental Theorem of Homomorphism to prove 

a very important result which classifies all cyclic groups. 

Theorem: Any cyclic group is isomorphic to  ( Z, + )  or  ( Zn, + ) . 

Proof: Let G = < x > be a cyclic group. Define 

f : Z  G : f ( n ) =xn. 

f is a homomorphism because 

f ( n + m )  = xn+m = xn . xm = f ( n )  f ( m ) . 

Also note that Im f = G. 

1, if n is even
f(n)

1, if n is odd.


 



1 0
.

0 1

  
  
  
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Now, we have two possibilities for Ker I  Ker f =  { 0 )  or Ker f   { 0 

} . 

Case 1  ( Ker f =  { 0 )  ) : In this case f is 1-1. Therefore, f is an 

isomorphism. Therefore, by Theorem 7 of unit 6, f-1 is an isomorphism. 

That is, G  ( Z, + ) . 

Case 2  ( Ker f #  { 0 )  ) : Since Ker f  Z, we know that Ker f = nZ, for 

some n  N. Therefore, by the Fundamental Theorem of 

Homomorphism, Z/nZ  G. 

 G = Z/nZ =  ( Zn, + ) . 

Over here note that since < x > = Zn, o ( x )  = n. So, a finite cyclic group 

is isomorphic to Zn, where n is the order of the group. 

Theorem : If H and K are subgroups of a group G, with K normal in G, 

then H/ ( H K )    

 ( HK ) /K. 

Proof: We must first verify that the quotient groups H/ ( H K )  and  ( 

HK ) /K are well defined. You know that H K  H. You know that HK  

G. Again, you know that KHK. Thus, the given quotient groups are 

meaningful. 

Now, what we want to do is to find an onto homomorphism f : H —  ( 

HK ) . Then we can apply the Fundamental 

Theorem of Homomorphism and get the result. We define f : H   ( HK 

) /K : f ( h )  = hK. 

Now, for x, y  H, 

f ( xy )  = xyK =  ( xK )   ( yK )  = f ( x )  f ( y ) . 

Therefore, f is a homomorphism. 

We will show that Im f =  ( HK ) /K. Now, take any element hK  Im f. 

Since h  H, h HK 

 hK   ( HK ) /K.  Im f   ( HK ) /K. On the other hand, any element 

of  ( HK ) /K is 

hkK = hK, since k  K. 
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 hkK  Im f.  ( HK ) /K  Im f. 

 Im f =  ( HK ) /K. 

Finally, Ker f =  {  h  H | f ( h )  = K  }  =  {  h  H hK = K  }  

=  {  h  H | h   K  }  

= H  K . 

Thus, on applying the Fundamental Theorem, we get H /  ( H  K )    ( 

HK )  / K 

We would like to make a remark here. 

Remark: If H and K are subgroups of  ( G.+  ) , then Theorem 3 says 

that  

 ( H + K )  / K  H/H  K. 

Theorem: 

H. Then  ( G/K ) / ( H/K )   G/H. 

Proof: We will define a homomorphism from G/K onto G/H, whose 

kernel will turn out to be H/K. 

Consider f : G/K  G/H : f ( Kx )  = Hx. f is well-defined because Kx = 

Ky tor x, y  G 

 xy-1  K  H  xy-1  H   Hx  Hy  ( Kx )  = f ( Ky ) . 

 

Check your progress-1 

1. An isomorphism of a group G itself is called as an ................. of G. 

 ( a ) Homomorphism  ( b )  automorphism 

 ( c ) Herf  ( d )  one-to-one function 

2. The word isomorphisms is derived from Greek word ISOS meaning 

................. 

 ( a ) equal  ( b )  unequal 

 ( c ) bijective  ( d )  subjective 
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2.3 AUTOMORPHISMS 

Let us start discussing the concept of automorphism 

Let G be a group. Consider  

Aut G =  {  f : G  G | f is an isomorphism  } . 

You have already seen that the identity map IG  Aut G. You know that 

Aut G is closed under the binary operation of composition. Iff E Aut G, 

then f-1  Aut G. We summarise this discussion in the following 

theorem. 

An isomorphism from a group  ( G,* )  to itself is called an 

Automorphisms of this group. Thus it is a bijection f : G  G such that 

f ( u )  * f ( v )  = f ( u * v ) . 

An automorphism always maps the identity to itself. The image under an 

automorphism of a conjugacy class is always a conjugacy class  ( the 

same or another ) . The image of an element has the same order as that 

element. 

The composition of two automorphisms is again an automorphism, and 

with this operation the set of all automorphisms of a group G, denoted by 

Aut ( G ) , forms itself a group, the automorphism group of G. 

For all Abelian groups there is at least the automorphism that replaces 

the group elements by their inverses. However, in groups where all 

elements are equal to their inverse this is the trivial automorphism, e.g. in 

the Klein four-group. For that group all permutations of the three non-

identity elements are automorphisms, so the automorphism group is 

isomorphic to S3 and Dih3. 

In Zp for a prime number p, one non-identity element can be replaced by 

any other, with corresponding changes in the other elements. The 

Automorphisms group is isomorphic to 

Zp – 1. For example, for n = 7, multiplying all elements of Z7 by 3, 

modulo 7, is an automorphism of order 6 in the automorphism group, 

because 36 = 1  ( modulo 7 ) , while lower powers do not give 1. Thus 

this automorphism generates Z6. There is one more automorphism with 
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this property: multiplying all elements of Z7 by 5, modulo 7. Therefore, 

these two correspond to the elements 1 and 5 of Z6, in that order or 

conversely. 

The automorphism group of Z6 is isomorphic to Z2, because only each 

of the two elements 1 and 5 generate Z6, so apart from the identity we 

can only interchange these. 

The automorphism group of Z2 × Z2 × Z2 = Dih2 × Z2 has order 168, as 

can be found as follows. 

All 7 non-identity elements play the same role, so we can choose which 

plays the role of  ( 1,0,0 ) . Any of the remaining 6 can be chosen to play 

the role of  ( 0, 1, 0 ) . This determines which corresponds to  ( 1, 1, 0 ) . 

For  ( 0, 0, 1 )  we can choose from 4, which determines the rest. Thus 

we have 7 × 6 × 4 = 168 automorphisms. They correspond to those of the 

Fano plane, of which the 7 points correspond to the 7 non-identity 

elements. The lines connecting three points correspond to the group 

operation: a, b, and c on one line means a + b = c, a + c = b, and b + c = 

a. See also general linear group over finite fields. 

For Abelian groups all automorphisms except the trivial one are called 

outer automorphisms. 

Non-Abelian groups have a non-trivial inner automorphism group, and 

possibly also outer Automorphisms. 

Theorem: Let G be a group. Then Aut G, the set of automorphisms of G, 

is a group. 

Let us look at an example of Aut G. 

 Example: Show that Aut Z  Z1. 

Solution: Let f : Z  Z be an automorphism. Let f ( 1 )  = n. We will 

show that n = 1 

or – 1. Since f is onto and 1  Z , m Zsuch that f ( m )  = l, i.e., mf ( l 

) =l, ie., m=l. 

n = 1 or n = –1. 

Thus, there are only two elements in Aut Z, I and –I. 
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So Aut Z = < – I >  Z2. 

Now given an element of a group G. We will define an automorphism of 

G corresponding to it. 

Consider a fixed element g  G. Define 

fg : G  G : fg ( x )  = gxg-1. 

We will show that fg is an automorphism of G. 

 ( i )  f, is a homomorphism : If x, y  G, then 

 fg ( xy )  = g ( xy )  g-1 

 = gx ( e )  yg-1, where e is the identity of G. 

 = gx ( g-1g )  yg-1 

 =  ( gxg-1 )   ( gyg-1 )  

 = fg ( x )  fg ( dy ) . 

 ( ii )  fg is 1-1 : For x, y  G, fg ( x )  = fg ( y )   gxg-1 = gyg-1 x 

= y, by the cancellation laws in G. 

 ( iii )  fg is onto : If y  G, then 

 Y =  ( gg-1 ) y ( gg-1 )  

 =   ( g-1yg ) g-1 

 = fg ( g-1yg )   lm fg. 

Thus, f, is an automorphism of G. 

Definition: fg is called an inner automorphism of G induced by the 

element g in G. The subset of Aut G consisting of all inner 

automorphism of G is denoted by Inn G. 

For example, Let us compute fg ( 1 ) . fg ( l 3 )  and fg ( 1 2 3 ) , where g 

=  ( 1 2 ) . Note that g-1 =  ( 1 2 )  = g. 

Now, fg  ( 1 )  = g a I o g-1 = I, 

fg ( l  3 )  =  ( 1 2 )   ( 1 3 )   ( 1 2 )  =  ( 2 3 ) . 
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fg ( l 2 3 )  =  ( 1 2 )  ( 1 2 3 )  ( 1 2 )  =  ( 1 3 2 ) . 

Theorem: Let G be a group. Then Inn G is a normal subgroup of Aut G. 

i 

Proof: Inn G is non-empty, because IG = fe  Inn G, where e is the 

identity in G. 

Now, let us see if f, o fh  Inn G for g, h  G. 

For any x  G,fg . fn ( x )  = fg ( hxh-1 )  

 = g ( hxh-1 )  g-1 

 =  ( gh ) x  ( gh ) -1 

 = fgh ( x )  

Thus, fgh = fg o fh, i.e., Inn G is closed under composition. Also fe = IG 

belongs to Inn G. 

Now, for fg  Inn G, 3 fg-1  Inn G such that 

fg o fg-1 = fgg-1 = fe = IG. Similarly, fg-1o fg = IG. 

Thus, fg-1 =  ( fg ) -1. That is every element of Inn G has an inverse in 

Inn G. 

This proves that Inn G is a subgroup of Aut G. 

Now, to prove that Inn  Aut G, let Aut G and fg  Inn G. Then, for 

any x  G 

-1 × fg ×  ( x )  = -1 × fg (   ( x )  )  

= 1  ( g ( x ) g-1 )  

= -1  ( g )  -1 ( ( x )  )  -1 ( g-1 )  

= -1  ( g )  x[-1  ( g ) ]-1 

=   ( Note that -1 ( g )   G. )  

-1 o fg o  =   Inn G    Aut G and fg  Inn G. 

 Inn G  Aut G. 

1 (g )f 


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Now we will prove an interesting result which relates the cosets of the 

centre of a group G to 

lnn G. Recall that the centre of G, Z ( G )  =  {  x  G | xg = gx   g  G  

} . 

Theorem: Let G be a group. Then G/Z ( G )   Inn G. 

Proof: As usual, we will use the powerful Fundamental Theorem of 

Homomorphism to prove this result. 

We define f : G Aut G : f ( g )  = fg. 

Firstly, f is a homomorphism because for g, h  G, 

f ( gh )  = fgh 

        = I, o fh  ( sec proof of Theorem 13 )  

         = [ ( g )  o f ( h ) . 

Next, Im F =  (  fg, 1 g  G  )  = Inn G. 

Finally, Kerf =  (  g  G | f, = IG  }  

 =  {  g  G [ fg ( x )  = x   x G  }  

 =  {  g G | gxg-1 = x   x  G  }  

 =  {  g G | gx = xg   x G  }  

 = Z ( G ) . 

Therefore, by the Fundamental Theorem, 

G/Z ( G )   Inn G. 

Check your progress-2 

3. The subset of Aut G consisting of all inner automorphism of G is 

denoted by _________. 

a. G Inn 

b. Inn G 

4. For Abelian groups all automorphisms except the trivial one are called 

_______________.  
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a. Outer automorphisms 

b. Inner automorphisms 

2.4 LET US SUM UP     

Here we have studied the proof of the Fundamental Theorem of 

Homomorphism, which says that if f : G1  G2 is a group 

homomorphism, then G1/Ker f  Im f. Any infinite cyclic group is 

isomorphic to  ( Z, + ) . Any finite cyclic group of order n is 

isomorphic to  (  Z , + ) . Let G be a group, H  G, K  G. Then H/ 

( H K )   HK ) /K. Let G be a group, H   G, K  G, K  H, Then  

( G/K ) / ( H/K )   G/H. 

The set of automorphism of a group G, Aut G, is a group with respect to 

the composition of functions.  Inn G  Aut G, for any group G.  

G/Z ( G )   Inn G, for any group G. 

2.5 KEYWORDS 

1. Group homomorphism: Iff : G1   G2 and g : G2  G3 are two 

group homomorphisms, then the composite map g . f : G1   G3 

is also a group homomorphism. 

2. Isomorphisms: Let G1 and G2 be two groups. A homomorphism  

f : G1 G2 is called an isomorphism if f is 1-1 and onto. 

2.6 QUESTIONS FOR REVIEW 

1. Let G be a group and H   G. Show that there exists a group G1 and 

a homomorphism 

f : G   G1 such that Ker f = H. 

2. Show that the homomorphic image of a cyclic group is cyclic i.e., if 

G is a cyclic group and f : G   G‘ is a homomorphism, then f ( G )  

is cyclic. 

3. Show that Z = nZ, for a fixed integer n, 



 


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  ( Hint: Consider f :  ( Z, + )     ( nZ, + )  : f ( k )  = nk )  

4. Is f : Z   Z : f ( x )  = 0 a homomorphism?  

5.     Describe outer automorphisms. 

2.7 SUGGESTED READINGS AND 

REFERENCES 

1. Thomas W Judson  ( 2013 ) . Abstract Algebra: Theory and 

Applications. Orthogonal Publishing. 

2. Paul B. Garrett  ( 2007 ) . Abstract Algebra. Chapman and Hall/CRC. 

3. Vijay K Khanna  ( 2017 ) .A Course in Abstract Algebra Fifth 

Edition. Vikas Publishing House  

4. LALJI PRASAD  ( 2016 ) . Modern Abstract Algebra. Paramount 

Publication 

5. Stephen Lovett  ( 2016 ) . Abstract Algebra: Structures and 

Applications. Chapman and Hall/CRC 

2.8 ANSWERS TO CHECK YOUR 

PROGRESS 

 

1.  ( b )   ( answer for Check your Progress-1 Q.1 )  

2.  ( a )    ( answer for Check your Progress-1 Q.2 )  

3.  ( b )   ( answer for Check your Progress-2 Q.3 )  

4.  ( a )    ( answer for Check your Progress-2 Q.4 )  
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UNIT - 3: PERMUTATION GROUPS 

STRUCTURE 

3.0 Objectives 

3.1 Introduction 

3.2 Groups  

3.2.1 Symmetric Group 

3.2.2 Cyclic Decomposition 

3.2.3 Alternating Group 

3.3 Cayley‘s Theorem 

3.4 Let Us Sum Up 

3.5 Keywords 

3.6 Questions For Review 

3.7 Suggested Readings And References 

3.8 Answers To Check Your Progress 

3.0 OBJECTIVES 

After studying this unit, you should be able to: 

 Discuss the concept of  permutation group  

 Explain the symmetric group  

 Describe the cyclic decomposition  

 Prove and use Cayley‘s Theorem 

3.1 INTRODUCTION 

In earlier classes, you have studied about the symmetric group. As you 

have often seen in previous units, the symmetric groups S, as well as its 

subgroups, have provided us a lot of examples. The symmetric groups 

and their subgroups are called permutation groups. It was the study of 

permutation groups and groups of transformations that gave the 

foundation to group theory. In this unit, we will prove a result by the 

mathematician Cayley, which says that every group is isomorphic to 



Notes 

39 

permutations group. This result is what makes permutation groups so 

important. 

3.2 GROUPS 

In earlier units, you have studied that a permutation on n non-empty set 

X is a bijective function from X onto X. We denote the set of all 

permutations on X by S ( X ) . 

 3.3.1 Symmetric Group 

Suppose X is a finite set having n elements. For simplicity, we take these 

elements to be 

1, 2, . . . , n. Then, we denote the set of all permutations on these n 

symbols by Sn. 

We represent any f  Sn in n 2-line form as 

 

Now, there are n possibilities for f ( l ) , namely, 1, 2, . . . , n. Once f ( 1 )  

has been specified, there are  ( n – 1 )  possibilities for f ( 2 ) , namely,  { 

1, 2, . . . , n }  \  { f ( 1 )  } . This is because f is 1-1. Thus, there are 

n ( n – 1 )  choices for f ( 1 )  and f ( 2 ) . Continuing in this manner, we 

see that there are n! different ways in which f can be defined. Therefore, 

S, has n! element. 

Now, let us discuss at the algebraic structure of S ( X ) , for any set X. 

The composition of permutations is a binary operation on S ( X ) . To 

help you regain practice in computing the composition of permutations, 

consider an example. 

Let f =  

Then, to get fog we first apply g and then apply f. 

 f o g ( 1 )  = f ( g ( 1 )  )  = f ( 4 )  = 3. 

f o g  ( 2 )  = f ( g ( 2 )  )  f ( 1 )  = 2. 

f o g  ( 3 )  = f ( g ( 3 )  )  = f ( 3 )  = 1. 

1 2 .... n
f .

....f(1) f(2) f(n)

 
  
 

4

1 2 3 4 1 2 3 4
and g be in S .

2 4 1 3 4 1 3 2

   
   

   
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f o g  ( 4 )  = f ( g ( 4 )  )  = f ( 2 )  = 4. 

 f o g =  

 

 

Figure: Example Showing Symmetric Group 

Now, let us go back to S ( X ) , for any set k. 

Theorem: Let X be a non-empty set. Then the system  ( S ( X ) , 0  )  

forms a group, called the symmetric group of X. 

Thus, Sn is a group of order n!. We call Sn, the symmetric group of 

degree n. Note that if f  Sn, then  

Remark: From now we will refer to the composition of permutations as 

multiplication of permutations. We will also drop the composition sign. 

Thus, we will write f o g as fg. The two-line notation that we have used 

for a permutation is rather cumbersome. In the next section we will see 

how to use a shorter notation. 

3. 3 .2 Cyclic Decomposition 

Let us first discuss what a cycle is. 

Consider the permutation f = . Choose any one of the symbols say 1. 

Now, we write down a left hand bracket followed by I : ( 1 

Since f maps 1 to 3, we write 3 after 1 : ( 1 3 

Since f maps 3 to 4, we write 4 after 3 : ( 1 3 4 

Since f maps 4 to 2, we write 2 after 4 : (  l 3 4 2 

1 2 3 4

3 2 1 4

 
 
 

1
....f(1) f(2) f(n)

f .
1 2 .... n

  
  
 
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Since f maps 2 to 1  ( the symbol we started with ) , 

we close the brackets after the symbol  ( 1  3 4 2 )  

Thus, we write f =  ( 1 3 4 2 ) . This means that f maps each symbol to 

the symbol on its right, except for the final symbol in the brackets, which 

is mapped to the first. 

If we had chosen 3 as our starting symbol we would have obtained the 

expression  ( 3 4 2 1 )  for f. However, this means exactly the same as  ( 1 

3 4 2 ) , because both denote the permutation which we have represented 

diagrammatically in Figure 8.2. 

 

Figure:  ( 1 3 4 2 )  

 

Such a permutation is called a 4-cycle, or a cycle of length 4. Figure 8.2 

can give you an indication as to why we give this name. 

Let us give a definition now. 

Definition: A permutation f  Sn, is called an r-cycle  ( or cycle of 

length r )  if there are r distinct integers i1, i2,, i3, . . . , ir lying between 1 

and n such that 

f ( i1 )  = i2, f ( i2 )  = i3, . . . . . , f ( i,-1 )  = ir, f ( ir )  = i1. 

and f ( k )  = k  k   { i1, i2 , . . . , ir ) . 

Then, we write f =  ( i1 i2 . . . . . ir ) . 

In particular, 2-cycles are called transpositions. For example, the 

permutation f =  ( 2 3 )   S3 is a transposition. Here f ( 1 )  = 1, f ( 2 )  = 

3 and f ( 3 )  = 2. 

1

2

3

4
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Later you will see that transpositions play a very important role in the 

theory of permutations. 

Now consider any 1-cycle  ( i )  in S,. It is simply the identity 

permutation  since it maps i to i and the other  ( n - 1 )  

symbols to themselves. 

Let us see some examples of cycles in S3  ( 1 2 3 )  is the 3-cycle that 

takes 1 to 2, 2 to 3 and 3 to 1. There are also 3 transpositions in S3, 

namely,  ( 1 2 ) ,  ( 1 3 )  and  ( 2 3 ) . 

Now, can we express any permutation as a cycle? No. Consider the 

following example from S5. Let g be the permutation defined by 

g =  

If we start with the symbol 1 and apply the procedure for obtaining a 

cycle to g, we obtain 

 ( 1 3 4 )  after three steps, Because, g maps 4 to 1, we close the brackets, 

even though we have not yet written down all the symbols. Now we 

simply choose another symbol that has not appeared so far, say 2, and 

start the procedure of writing a cycle again. Thus, we obtain another 

cycle  ( 2 5 ) . Now, all the symbols are exhausted. 

 g =  ( 1 3 4 )   ( 2 5 ) . 

We call this expression for g a product of a 3-cycle and a transposition. 

In Figure 8.3 we represent g by a diagram which shows the 3-cycle and 

the 2-cycle clearly. 

 

 

1 2 .... n
I ,

1 2 .... n

 
  
 

1 2 3 4 5
.

3 5 4 1 2

 
 
 
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Figure:  ( 1 3 4 )   ( 2 5 )  

Because of the arbitrary choice of symbol at the beginning of each cycle, 

there are many ways of expressing g. For example, 

g =  ( 4 1 3 )   ( 2 5 )  =  ( 2 5 )   ( 1 3 4 )  =  ( 5 2 )   ( 3 4 1 ) . 

That is, we can write the product of the separate cycles in any order, and 

the choice of the starting element within each cycle is arbitrary. 

So, you see that g can‘t be written as a cycle; it is a product of disjoint 

cycles. 

Definition: We call two cycle disjoint if they have no symbol in 

common. Thus, disjoint cycles move disjoint sets of elements,  ( Note 

that f Î S,, moves a symbol i if f ( i )   i. We say that f fixes i if f ( i )  = 

i. )  

So, for example, the cycles  ( 1 2 )  and  ( 3 4 )  in S4 are disjoint. But  ( 1 

2 )  and  ( 1 4 )  are not disjoint, since they both move 1. 

Note that if f and g are disjoint, then fg=-gf, since f and g move disjoint 

sets of symbols. 

Now let us examine one more example. Let h be the permutation in S5 

defined by 

h =  

Following our previous rules, we obtain 

h =  ( 1 4 5 )   ( 2 )   ( 3 ) , 

because each of the symbols 2 and 3 is left unchanged by h. By 

convention, we don‘t include the 1-cycles  ( 2 )  and  ( 3 )  in the 

expression for h unless we wish to emphasize them, since they just 

represent the identity permutation. Thus, we simply write h =  ( 1 4 5 ) . 

The same process that we have just used is true for any cycle. That is, 

any r-cycle  ( i1 i2 . . . . . ir )  can be written as  ( i1 ir )   ( i1 i1 )  . . . . .  ( 

i1 i2 ) , a product of transpositions. 

Now we will use Theorem 2 to state a result which shows why 

transpositions are so important in the theory of permutations. 

1 2 3 4 5
.

4 2 3 5 1

 
 
 
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Theorem: Every permutation in Sn  ( n  2 )  can be written as a product 

of transpositions. 

Proof: The proof is really very simple. By Theorem 1 every permutation, 

apart from I, is a product of disjoint cycles. Also, you have just seen that 

every cycle is a product of transpositions. Hence, every permutation, 

apart from I, is a product of transpositions. 

Also, I =  ( 1 2 )   ( 1 2 ) . Thus, I is also a product of transpositions. So, 

the theorem is proved. 

Let us see how Theorem 3 works in practice. This is the same as  ( 1 4 )   

( 1 2 )   ( 1 3 )   ( 1 5 ) . 

Similarly, the permutation  

=  ( 1 3 4 )   ( 2 6 5 )  =  ( 1 4 )   ( 1 3 )   ( 2 5 )   ( 2 6 ) . 

The decomposition given in Theorem 3 leads us to a subgroup of Sn that 

we will now discuss. 

3.3.3 Alternating Group 

You have seen that a permutation in Sn can be written as a product of 

transpositions. But all such representations have one thing in common – 

if a permutation in Sn is the product of an odd number of transpositions 

in one such representation, then it will be a product of an odd number of 

transpositions in any such representation. Similarly, n is a product 

of an even number of transpositions in one representation, then f is a 

product of an even number of transpositions in any such representation. 

To see this fact we need the concept of the signature or sign function. 

Definition: The signature of f  Sn,  ( n  2 )  is defined to be 

sign  

For example, for f =  ( 1 2 3 )   S3, 

sign f =  

           

1 2 3 4 5 6

3 6 4 1 2 5

 
 
 

i , j 1

f(i) – f(i)
f

j – i



f(2) – f(1) f(3) – f(1) f(3) – f(2)
. .

2 – 1 3 – 1 3 – 2
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Similarly, iff =  ( 1 2 )   S3, then 

sign f =  

=  

Henceforth, whenever we talk of sign f, n for 

some n  2. 

Theorem: Let f, g  S,. Then sign  ( f o g )  =  ( sign f )   ( sign g ) . 

Proof: By definition, 

sign fog  

 

Now, as i and j take all possible pairs of distinct values from 1 to n, so do 

g ( i )  and g ( j ) , since g is a bijection. 

  

 sign  ( fog )  =  ( sign f )   ( sign g ) . 

Now we will show that Im  ( sign )  =  ( 1, – 1 } . 

Theorem:  ( a )  If t  S, is a transposition, then sign t = – 1. 

 ( b )  sign f = 1 or - 1  f  S,. 

 ( c )  Im  ( sign )  =  ( 1, –1 ) . 

Proof:  ( a )  Let t =  ( p q ) , where p < q. 

Now, only one factor of sign t involves both p and q, namely, 

 

Every factor of sign t that doesn‘t contain p or q equals 1, since 

 

f(2) – f(1) f(3) – f(1) f(3) – f(2)
. .

2 – 1 3 – 1 3 – 2

1 2 3 – 2 3 1
1.

1 2 1

    
    

   

n

i , j 1
i j

f(g(j)) – f(g(i))

j – i




i , j i , j

f(g( j)) f(g(i)) g( j) g(i)
.

g( j) g(i) j i

 


 
 

i j

f(g( j)) f(g(i))
sign f.

g( j) g(i)







t (q) – t p – 1
= 1.

q – p  q - p


t(i) t( j) i j
1, if i, j p, q.

i j i j

 
  

 
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The remaining factors contain either p or q, but not both. These can be 

paired together to form one of the following products. 

 

 

Taking the values of all the factors of sign t, we see that sign t = –1. 

 ( b )  Let f  S,. By Theorem 3 we know that f = t1,t2 .... t, for some 

transpositions t1, ..... tr in Sn. 

 sign f = sign  ( t1 t2 . . . . t, )  

 =  ( sign t1 )   ( sign t2 )  . . . . . sign  ( tr ) , by Theorem 3. 

 =  ( -1 ) r, by  ( a )  above. 

 sign f = 1 or –1. 

 ( c )  We know that Im  ( sign   { 1, – 1 } . 

We also know that sign t = –1, for any transposition t; and sign I = 1. 

  { 1, – 1 }   Im  { sign }  

 Im  ( sign )  =  { 1, –1 } . 

Now, we are in a position to prove what we said at the beginning of this 

section. 

Theorem: Let  S, and let 

f = t1t2 ..... tr = t1‘ t2‗..... t4’ 

be two factorisations off into a product of transpositions. Then either 

both r and s are even integers, or both are odd integers. 

Proof: We apply the function sign: Sn  { 1, –1 }  to f = t1t2 . . . . tr. 

By Theorem 4 we see that 

sign f =  ( sign t1 )   ( sign t2 )  ......  ( sign tr )  =  ( - 1 ) ‘. 

 sign  ( t1‘ t2‘ . . . ts‘ )  =  ( –1 )  substituting t1‘ t2‘. . . ts‘ for f. 

that is,  (  -1 ) s =  ( –1 ) r. 

t(i) – t(p) t(i) – t(q) i – q i – p
. = . l, if i > q,

i – p i – q i – p  i – q


t(p) – t(i) t(q) – t(i) q – i p – i
= . l, if i > p,

p – i q – i p – i  q – i

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This can only happen if both s and rare even, or both are odd. 

So, we have shown that for f  S, the number of factors occurring in any 

factorisation of into transposition is always even or always odd. 

Therefore, the following definition is meaningful. 

Definition: A permutation f  Sn, is called even if it can be written as a 

product of an even sign number of transposition. f is called odd if it can 

be represented as a product of an odd number of transpositions. 

For example,  ( 1 2 )   S3 is an odd permutation. In fact, any 

transposition is an odd permutation. On the other hand, any 3-cycle is an 

even permutation, since 

 ( i j k )  =  ( i k )   ( i j )  

Now, we define an important subset of Sn, namely, 

A, =  ( f  Sn, | f is even ) . 

We‘ll show that A,,  Sn, and that o ( An )  =  for n 2. 

Theorem: The set A,, of even permutations in S,, forms a normal 

subgroup of Sn, of order   

Proof: Consider the signature function, 

sign : Sn   ( 1, –1 ) . 

Note that  ( 1, –1 )  is a group with respect to multiplication. Now, Im  ( 

sign )  =  ( 1, –1 ) . Let us obtain Ker  ( sign ) . 

Ker  ( sign )  =  {  f  Sn | sign f = 1  }  

       =  ( f  Sn | f is even )  

       = A. 

 A   Sn. 

Further, by the Fundamental Theorem of Homomorphism 

Sn/An   ( 1, –1 ) . 

n!
,

2

n!
.

2


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 o ( Sn/An )  = 2, that is,  

   o ( An )  =  

Note that this theorem says that the number of even permutations in S, 

equals the number of odd permutations in S,. 

Theorem  leads us to the following definition. 

Definition: A,, the group of even permutations in Sn, is called the 

alternating group of degree n. 

Let us look at an example that you have already seen in previous units, 

A3. Now, Theorem says that o ( A3 )  =  Since  ( 1 2 3 )  =  ( 1 3 )   

( 1 2 ) ,  ( 1 2 3 )   A3. Similarly, 

 ( 1 3 2 )   A3. Of course, I  A3. 

 A3 =  { I,  ( 1 2 3 ) ,  ( 1 3 2 )  ) . 

A fact that we have used in the example above is that an r-cycle is odd if 

r is even, and even if r is odd. This is because  ( i1i2 .... ir, )  =  ( i1 i, )   ( 

i1 ir-1 )  . . . . . .  ( i1 i2 ) , a product of  ( r – 1 )  transpositions. 

Now, for a moment, Lagrange‘s theorem  says that the order of the 

subgroup of a finite group divides the order of the group. We also said 

that if 

n |o ( G ) , then G need not have a subgroup of order n. Now that you 

know what A4 looks like, we are in a position to illustrate this statement. 

We will show that A4 has no subgroup of order 6, even though 6 | o  ( A4 

) . Suppose such a subgroup H exists. Then o ( H )  = 6, o  ( A4 )  = 12. 

  ( A4 : H | = 2.   H  A4  ( see Theorem 3, Unit 1 ) . Now, A4/H is a 

group of order 2. 

 ( Hg ) 2 = H  g  A4.  ( Remember H is the identity of A4/H. )  

 g2  H   g  A4. 

Now,  ( 1 2 3 )  E A4.   ( 1 2 3 ) * =  ( 1 3 2 )   H. 

n

n

o(S )
2.

o(A )


no(S ) n!
.

2 2


3!
3.

2





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Similarly,  ( 1 3 2 ) 2 =  ( 1 2 3 )   H. By the same reasoning  ( 1 4 2 ) ,  

( 1 2 4 ) ,  ( 1 4 3 ) ,  ( 1 3 4 ) ,  ( 2 3 4 ) ,  ( 2 4 3 )  are also distinct 

element of H. Of course, I  H. 

Thus, H contains at least 9 elements. 

 o ( H )   9. This contradicts our assumption that o ( H )  = 6. 

Therefore, A4 has no subgroup of order 6. 

We use A4 to provide another example too.  ( See how useful A4 is! )  In 

earlier unit we‘d said that if H   N and N   G, then H need not be 

normal in 6. Well, here‘s the example.‘ 

Consider the subset V4 =  { I,  ( 1 2 )   ( 3 4 ) ,  ( 1 4 )   ( 2 3 ) ,  ( 1 3 )   ( 

2 4 )  )  of A4. 

Now, let H =  { I,  ( 1 2 )   ( 3 4 )  } . Then H is a subgroup of index 2 in 

V4. H A V4. 

So, H   V4, V4   A4. But H  A4. Why? Well,  ( 1 2 3 )   A4 is 

such that 

 ( 1 2 3 ) -1  ( 1 2 )   ( 3 4 )   ( 1 2 3 )  =  ( 1 3 )   ( 2 4 )   H. 

And now let us see why permutation groups are so important in group 

theory. 

Check Your Progress-1 

1. If .................. is a group of order n!. Then we call S, the symmetric 

group of define n. 

 ( a ) Sn  ( b ) Sn 

 ( c ) Sn
1
   ( d ) Sn-1 

2. Every permutation is Sn  ( n  .................. )  can be written as 

produce of transposition 

 ( a ) n  2  ( b ) n  3 

 ( c ) n  4  ( d ) n  5 

3. If t  S, is a transposition then sight = .................. 

 

  
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 ( a ) –1  ( b ) 1 

 ( c ) 0  ( d )  2 

3.3 CAYLEY’S THEOREM 

Most finite groups that first appeared in mathematics were groups of 

permutations. It was the English mathematician Clayley who first 

realised that every group has the algebraic structure of a subgroup of S ( 

X ) , for some set X. In this section we will discuss Cayley‘s result and 

some of its applications. 

Theorem ( Cayley ) : Any group G is isomorphic to a subgroup of the 

symmetric group S ( G ) . 

Proof: For a  G, we define the left multiplication function 

fa : G  G : f4 ( x )  = ax. 

fa is 1-1, since 

fa ( x )  = fa ( y )   ax = ay  x = y x, y E G. 

fa is onto, since any x E G is f,  ( a – ‘x ) . 

:. fa  S ( G )   a  G. 

 ( Note that S ( G )  is the symmetric group on the set G. )  

Now we define a function f : G  S ( G )  : f ( a )  = fa. 

We will show that f is an injective homomorphism. For this we note that 

 ( fao,fb )   ( x )  = fa ( bx )  = abx = fab  ( x )   a, b  G. 

 f ( ab )  = fab = fa o fb = f ( a )  of  ( b )    a, b  G. 

That is, f is a homomorphism. 

Now, Ker f =  ( a  G | fa = IG  )  

          =  (  a   G | fa ( x ) =x  x  G  }  

          =  (  a   G |a x = x   x  G  }  

         =  { e } . 










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Thus, by the Fundamental Theorem of Homomorphism, 

G/Ker f  Im f  S ( G ) , 

that is, G is isomorphic to a subgroup of S ( G ) . 

As an example of Cayley‘s theorem, we will show you that the Klein 4-

group K4 is isomorphic to the subgroup V4 of S4. The multiplication 

table for K4 is 

 

Check your Progress-2 

4. Any group G is .................. to a subgroup of the symmetric group S 

( G )  

 ( a ) isomorphic  ( b )  homomorphic 

 ( c ) automorphic  ( d )  surjective 

5. Any group is isomorphic to a .................. group. 

 ( a ) normal group  ( b )  subgroup 

 ( c ) cyclic group  ( d )  permutation group  

. 

3.4 LET US SUM UP     

The symmetric group S ( X ) , for any set X, and the group S,, in 

particular.  The definitions and some properties of cycles and 

transpositions. Any non-identity permutation in Sn can be expressed 

as a disjoint product of cycles.  

Any permutation in Sn  ( n  2 )  can be written as a product of 

transpositions. The homomorphism sign : Sn —  { 1, – 1 } , n  2. 

Odd and even permutations. A,, the set of even permutations in S,, 

is a normal subgroup of Sn of order   for.  Any group is 

isomorphic to a permutation group. 

. e a b c 

e e a b c 

a a e c b 

b b c e a 

c c b a e 

 

n!
,

2
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3.5 KEYWORDS 

1. Symmetric Group: Let X be a non-empty set. Then the system  ( S ( 

Xj, 0 )  forms a group, called the symmetric group of X. 

2. Permutation: A permutation f S, is called an r-cycle  ( or cycle of 

length r )  if there are r distinct integers i1, i2, i3, . . . , ir lying between 1 

and n. 

 

3.6 QUESTIONS FOR REVIEW 

1. Show that  ( S,, ° )  is a non-commutative group for n  3. 

  ( Hint: Check the   and   don‘t commute. )  

2. Write down 2 transpositions, 2 3-cycles and a 5-cycle in S5. 

3. Show that every permutation in Sn is a cyclic iff n < 4. 

4. Iff =  ( i2 i2 , ....i )   S,, then show that f-1 =  ( ir ir-1 .... i2i1 ) . 

5. Iff is an r-cycle, then show that o ( f )  = r, i.e., fr = I and f5  I, if s < 

r. 

  ( Hint: If f =  ( i1, i2 ....i ) , then f ( i1 )  = i2, r2 ( i1 )  = i3,....,fr-1 ( i1 )  

= im )  

6. Express the following cycles as products of transpositions.  

 ( a )  ( 1 3 5 )   ( b )   ( 5 3 1 )  

 ( c )  ( 2 4 5 3 )  

7. Write the permutation in E3 ( b )  as a product of transpositions. 

8. Show that  ( 1 2 .... 10 )  =  ( 1 2 )   ( 2 3 )  . . .  ( 9 10 ) . 

9. Check that  ( V4, ° )  is a normal subgroup of A4. 

 

1 2 3

2 3 1

 
 
 

1 2 3

3 2 1

 
 
 
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3.6 ANSWERS TO CHECK YOUR 

PROGRESS 

 

5.  ( b )   ( answer for Check your Progress-1 Q.1 )  

6.  ( a )   ( answer for Check your Progress-1 Q.2 )  

7.  ( a )   ( answer for Check your Progress-1 Q.3 )  

8.  ( a )   ( answer for Check your Progress-2 Q.4 )  

9.  ( d )   ( answer for Check your Progress-2 Q.5 )  
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UNIT – 4: GROUP ACTIONS 

STRUCTURE 

4.0 Objectives 

4.1 Introduction 

4.2 Direct Product of Groups 

4.2.1 External Direct Product 

4.3.2  Internal Direct Product 

4.3 Introduction To Sylow Theorems 

4.4 Groups of Order 1 to 10 

4.5 Finite Abelian Groups 

4.5.1 Definition 

4.5.2 Properties 

4.5.3 Notation 

4.6 Let Us Sum Up 

4.7 Keywords 

4.8 Questions For Review 

4.9 Suggested Readings And References 

4.10 Answers To Check Your Progress 

4.0 OBJECTIVES 

After studying this unit, you should be able to: 

 Discuss direct product of groups 

 State Sylow theorem 

 Explain groups of order 1 to 10. 

 Define finite abelian group 

4.1 INTRODUCTION 

In the last unit, we have studied about permutation group. This unit will 

provide you the information related to 15 finite groups and direct 

products. Let us understand all these one by one. 
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A group for which the elements commute  ( i.e., AB = BA for all 

elements A and B )  is called a finite abelian group. All cyclic groups are 

finite abelian, but a finite abelian group is not necessarily cyclic. All 

subgroups of a finite abelian group are normal. In a finite abelian group, 

each element is in a conjugacy class by itself, and the character table 

involves powers of a single element known as a group generator.  

4.2  DIRECT PRODUCT OF GROUPS 

In this section, we will discuss a very important method of constructing 

new groups. We will first see how two groups can be combined to form a 

third group. Then we will see how two subgroups of a group can be 

combined to form another subgroup. 

4 .2 .1 External Direct Product 

In this sub-section we will construct a new group from two or more 

groups that we already have. 

Let  ( G1, *1 )  and  (  ( G2, *2 )  be two groups. Consider their Cartesian 

product G = G1 × G2 =  {  ( x, y )  | 

x  G1, y  G2 } . 

Can we define a binary operation on G by using the operations on G1 

and G2? Let us try the method, namely, component-wise multiplication. 

That is, we define the operation * on  G by  ( a,b )  *  ( c, d ) = ( a*1 c, 

b*2d )   a, c  G1, b, d  G2. 

So, you have proved that G = G1 × G2 is a group with respect to *. We 

call G the external direct product of  ( G1, *1 )  and  ( G2, *2 ) . 

For example, R2 is the external direct product of R with itself. 

Another example is the direct product  ( Z, + )  ×  ( R*, . )  in which the 

operation is given by  ( m, X )  *  ( n, y )  =  ( m + n, xy ) . 

We can also define the external direct product of 3, 4 or more groups on 

the same lines. 


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Definition: Let  ( G1, *1 ) ,  ( G2, *2 ) , . . . . . ,  ( G,, *n )  be n groups. 

Their external direct product is the group  ( G, * ) , where 

G = G1 × G2 ..... × Gn and 

Thus, Rn is the external direct product of n copies of R, 

We would like to make a remark about notation now. 

Remark: Henceforth, we will assume that all the operations *, *1,. . . , 

*n are multiplication, unless mentioned otherwise. Thus, the operation on 

G = G1 × G2 × ..... × Gn will be given by 

 ( a1, ..... , a )  .  ( b1, ..... , b )  

=  ( a1b1, a2b2, .... , aaba, )   ai, bi  Gi. 

Now, let G be the external direct product G1 × G2. Consider the 

projection map 

T1 : G1 × G2  G1 : p1 :  ( x, y )  = x. 

Then 1 is a group homomorphism, since 

1  (  ( a, b )   ( c, d )  )  = 1  ( ac, bd )  

 = ac 

 = 1  ( a, b )  1  ( c, d )  

1 is also onto, because any x  G1 is p1  ( x, e2 )  

Now, let us look at Ker 1. 

Ker 1 =  {  ( x, y )   G× G2 | 1  ( x, y )  = e1 }  

 =  {  ( e1, y )  | y  Gz }  =  { e1 }  × G2. 

  { e }  × G2  G1 × G2. 

Also, by the Fundamental Theorem of Homomorphism  ( G1 × G2 ) / (  { 

e1 }  × Gz )   G1. 

We can similarly prove that G1 ×  { e2 }   G1 × G2 and  ( G1 × G2 ) / ( 

G1 ×  { e2 }  )   G2. 
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So, far we have seen the construction of G1 × G2 from two groups G1 

and G2. Now we will see under what conditions we can express a group 

as a direct product of its subgroups. 

4 .2 .2 Internal Direct Product 

Let us begin by recalling from previous unit that if H and K are normal 

subgroups of a group G, then HK is a normal subgroup of G. We are 

interested in the case when HK is the whole of G. We have the following 

definition. 

Definition: Let H and K be normal subgroups of a group G. We call G 

the internal direct product of H and K if 

G = HK and H  K =  { e } . 

We write this fact as G = H × K. 

For example, let us consider the familiar Klein 4-group 

K4 =  { e, a, b, ab } , where a2 = e, b2 = e and ab = ba. 

Let H = <a> and K = <b>. Then H  K =  { e ) . Also, K4 = HK. 

 K4 = H × K. 

Note that H  Z2 and K  Z2    K4  Z2 × Z2. 

For another example, consider Z10. It is the internal direct product of its 

subgroups H =  and K =   This is because 

 ( i )  Z10= H + K, since any element of Z10 is the sum of an element of 

H and an element of K, and 

 ( ii )  H  K=  

Now, can an external direct product also be an internal direct product? 

What does it say? It says that the external product of G1 × G2 is the 

internal product  ( G1 ×  { e2 }  )  ×  (  { e1 }  × G2 ) . 

We would like to make a remark here. 

Remark: Let H and K be normal subgroups of a group G. Then the 

internal direct product of H and K is isomorphic to the external direct 

{0, 5} {0, 2, 4, 6, 8}.

{0}
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product of H and K. Therefore, when we talk of an internal direct product 

of subgroups we can drop the word internal, and just say ‗direct product 

of subgroups‘. 

Let us now extend the definition of the internal direct product of two 

subgroups to that of several subgroups. 

Definition: A group G is the internal direct product of its normal 

subgroups H1, H2, .... ,Hn if 

 ( i )  G = H1 H2 .... Hn and 

 ( ii )  Hi  H1 .... Hi-1, Hi+1 .... Hn =  { e }   i = 1, .... , n. 

For example, look at the group G generated by  { a, b, c } , where a2 = e 

= b2 = c2 and ab = ba, ac = ca, bc = cb. This is the internal direct product 

of < a >, < b > and < c >. That is G  Z2 × Z2 × Z2. 

Now, can every group be written as an internal direct product of two or 

more of its proper normal subgroups? Consider Z. Suppose Z = H × K, 

where H, K are subgroups of Z. 

You know that H = < m > and K = < n > for some m, n  Z. Then mn  

H  K. But if H × K is a direct product, H  K =  { 0 } . So, we reach a 

contradiction. Therefore, Z can‘t be written as an internal direct product 

of two subgroups. 

By the same reasoning we can say that Z can‘t be expressed as H1 × H2 

× ..... × Hn, where Hi  Z  i = 1, 2, .... , n. 

When a group is an internal direct product of its subgroups, it satisfies 

the following theorem. 

Theorem : Let a group G be the internal direct product of its subgroups 

H and K. Then  

 ( a )  each x  G can be uniquely expressed as x = hk, where h  H, k 

 K; and 

 ( b )  hk = kh  h  H , k  K . 




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Proof:  ( a )  We know that G = HK. Therefore, if x  G, then x = hk, for 

some h  H, k  K. Now suppose x = h1k1 also, where h1  H and k1  

K. Then hk = h1k1. 

h1-1 h = k1k-1. Now h1-1 h  H. 

Also, since h1-1h = k1k-1  K, h1-1 h  K.  h1-1 h  H  K =  { e } . 

 h1-1h = e, which implies that h = h1. 

Similarly, k1 k-1 = e, So that k1 = k. 

Thus, the representation of x as the product of an element of H and an 

element of K is unique. 

 ( b )  The best way to show that two elements x and y commute is to 

show that their commutator x-1y-1 xy is identity. So, let h  H and 

k  K and consider h-‘k-‘hk. Since K  G, h-1k-1 h  K. 

h-1k-1hk  K. 

By similar reasoning, h-1k-1hk  H h-1k-1hk  H  K =  { e } . 

 h-1 k-1hk = e, that is, hk = kh. 

Now let us look at the relationship between internal direct products and 

quotient groups. 

Theorem: Let H and K be normal subgroups of a group G such that G = 

H × K. Then G/H  K and G/K  H. 

Proof: We will use Theorem 8 of Unit 1 to prove this result. 

Now G = HK and H  K =  { e } . Therefore, 

G/H = HK/H  K/H  K = K/ { e )   K. 

We can similarly prove that G/K  H. 

Theorem: Let G be a finite group and H and K be its subgroups such 

that G = H X K. 

Then o ( G )  = o ( H )  o ( K ) . 

Check Your progress-1 


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1. Let a group G be the ................... product of its subgroups H and k. 

Then hk = kh  h  H, k  K. 

 ( a ) external  ( b ) internal 

 ( c ) finite  ( d ) infinite 

2. Let H and k be normal subgroups of a group G such that G = H × k. 

Then G/H  ................... and G/k  H 

 ( a ) k  ( b ) H 

 ( c ) H-1  ( d ) k-1‘ 

4.3 INTRODUCTION TO SYLOW 

THEOREMS   

In Lagrange‘s theorem, which says that the order of a subgroup of a 

finite group divides the order of the group. We also said that if G is a 

finite cyclic group and m | o ( G ) , then G has a subgroup of order. But if 

G is not cyclic, this statement need not be true, as you have seen in the 

previous unit. In this context, in 1845 the mathematician Cauchy proved 

the following useful result. 

Theorem : If a prime p divides the order of a finite group G, then G 

contains an element of order p. 

The proof of this result involves a knowledge of group theory that is 

beyond the scope of this course. Therefore, we omit it. 

Theorem : If a prime p divides the order of a finite group G, then G 

contains a subgroup of order p. 

Proof: Just take the cyclic subgroup generated by an element of order p. 

This element exists because of Theorem.  

So, by Theorem  we know that any group of order 30 will have a 

subgroup of order 2, a subgroup of order 3 and a subgroup of order 5. In 

1872 Ludwig Sylow, a Norwegian mathematician, proved a remarkable 

extension of Cauchy‘s result. This result, called the first Sylow theorem, 

has turned out to be the basis of finite group theory. Using this result we 
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can say, for example, that any group of order 100 has subgroups of order 

2, 4, 5 and 25. 

Theorem: Let G be a finite group such that o  ( G )  = pnm, where p is a 

prime, n  1 and  ( p, m )  = 1. Then G contains a subgroup of order pk  k 

= 1, . . . , n. 

We shall not prove this result or the next two Sylow theorems either. 

But, after stating all these results we shall show how useful they are. 

The next theorem involves the concepts of conjugacy and Sylow p-

subgroups which we now define. 

Definition: Two subgroups H and K of a group G are conjugate in G if  

g  G such that K = g-1Hg and then K is called a conjugate of H in G. 

Now we define Sylow p-subgroups. 

Definition: Let G be a finite group and p be a prime such that pn | o ( G )  

but pn+1 o ( G ) , for some n  1. Then a subgroup of G of order pn is 

called a Sylow p-subgroup of G. 

So, if o ( G )  = pnm,  ( p, m )  = I, then a subgroup of G of order p‖ is a 

Sylow p-subgroup. Theorem 6 says that this subgroup always exists. But, 

a group may have more than one Sylow p-subgroup. The next result tells 

us how two Sylow p-subgroups of a group are related. 

Theorem : Let G be a group such that o ( G )  = pnm,  ( p, m )  = 1, p a 

prime. Then any two Sylow p-subgroups of G are conjugate in G. 

And now let us see how many Sylow p-subgroups a group can have. 

Theorem : Let G be a group of order pnm, where  ( p, m )  = 1 and p is a 

prime. Then np, the number of distinct Sylow p-subgroups of G, is given 

by np = 1 + kp for some k  0. And further, np | o ( G ) . 

We would like to make a remark about the actual use of Theorem 8. 

Remark: Theorem 8 says that np,  1  ( mod p ) .  ( np, pn )  = 1. Also, 

since np | o ( G ) , using Theorem we find that np | m. This fact helps us 

to cut down the possibilities for n,, as you will see in the following 

examples. 
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Example: Show that any group of order 15 is cyclic. 

Solution: Let G be a group of order 15 = 3 × 5. Theorem 6 says that G 

has a Sylow 3-subgroup. Theorem 8 says that the number of such 

subgroups must divide 15 and must be congruent to l ( mod 3 ) . In fact, 

by Remark 3 the number of such subgroups must divide 5 and must be 

congruent to l ( mod 3 ) . Thus, the only possibility is 1. Therefore, G has 

a unique Sylow 3-subgroup, say H. Hence, by Theorem 7 we know that 

H   G. Since H is of prime order, it is cyclic. 

Similarly, we know that G has a subgroup of order 5. The total number 

of such subgroups is 1,6 or 11 and must divide 3. Thus, the only 

possibility is 1. So G has a unique subgroup of order 5, say K. Then K  

G and K is cyclic. 

Now, let us look at H  K. Let x  H  K. Then x  H and x  K. 

 o ( x )  | o ( H )  and o ( x )  | o ( K )  i.e., o ( x )  | 3 and o ( x )  | 5. 

 o ( x )  = 1.    x = e. That is, H  K =  { e } . Also, 

 G = HK. 

So, G = H × K  Z3 X Z5 = Z15, 

Example: Show that a group G of order 30 either has a normal subgroup 

of order 5 or a normal subgroup of order 3, i.e. G is not simple. A group 

G is called simple if its only normal subgroups. 

Solution: Since 30 = 2 × 3 × 5, G has a Sylow 2-subgroup, a Sylow 3-

subgroup and a Sylow 5-subgroup. The number of Sylow 5-subgroups is 

of the form 1 + 5k and divides 6. Therefore, it can be 1 or 6. If it is 1, 

then the Sylow 5-subgroup is normal in G. 

On the other hand, suppose the number of Sylow 5-subgroups is 6. Each 

of these subgroups are distinct cyclic groups of order 5, the only 

common element being e. Thus, together they contain 24 + 1 = 25 

elements of the group. So, we are left with 5 elements of the group which 

are of order 2 or 3. Now, the number of Sylow 3-subgroups can be 1 or 

10. We can‘t have 10 Sylow 

3-subgroups, because we only have at most 5 elements of the group 




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which are of order 3. So, if the group has 6 Sylow 5-groups then it has 

only 1 Sylow 3-subgroup. 

Now let us use the powerful Sylow theorems to classify groups of order 

1 to 10. In the process we will show you the algebraic structure of 

several types of finite groups. 

Check your progress-2 

3. Let G  ................... be and H and k be its subgroup such that G = H 

× k. Thus O ( G )  = O ( H )  o ( k ) . 

 ( a ) external  ( b ) internal 

 ( c ) finite  ( d ) infinite 

4. If a prime p divides the order of a finite group G, then G contains an 

element of  ................... 

 ( a ) P  ( b ) G 

 ( c ) Q  ( d ) R 

4.4  GROUPS OF ORDER 1 TO 10 

Here, we will apply the results of the above discussion to study some 

finite groups. In particular, we will list all the groups of order 1 to 10, up 

to isomorphism. 

We start with proving a very useful result. 

Theorem : Let G be a group such that o ( G )  = pq, where p, q are 

primes such that p > q andq   p – 1. Then G is cyclic. 

Proof: Let P be a Sylow p-subgroup and Q be a Sylow q-subgroup of G. 

Then o ( P )  = p and 

o ( Q )  = q. Now, any group of prime order is cyclic, so P = < x > and Q 

= < y > for some x, y  G. 

By the third Sylow theorem, the number np of subgroups of order p can 

be 1 , 1+ p, 1 + 2p, . . . , and it must divide q. But p > q. Therefore, the 

only possibility for np is 1. Thus, there exists only one Sylow p-

subgroup, i.e., P. Further, by Sylow‘s second theorem P  G. 

|


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Again, the number of distinct Sylow q-subgroups of G is nq, = 1 + kq for 

some k, and n, | p. Since p is a prime, its only factors are 1 and p.  n, = 

1 or nq = p. Now if 1 + kq = p, then q | p – 1. But we started by assuming 

that 9  p - 1. So we reach a contradiction. Thus, nq = 1 is the only 

possibility. Thus, the Sylow q-subgroup Q is normal in G. 

Now we want to show that G = P × Q. For this, let us consider P  Q. The 

order of any element of P  Q must divide up as well as q, and hence it 

must divide  ( p, q )  = 1. 

P  Q =  { e } .    o ( PQ )  = o ( P )  o ( Q )  = pq = o ( G )  G = 

PQ. 

So we find that G = P × Q  Zp × Zp  Zpq, 

Therefore, G is cyclic of order pq. 

Using Theorem, we can immediately say that any group of order 15 is 

cyclic. Similarly, if 

o ( G )  = 35, then G‘is cyclic. 

Now if q | p – 1, then does o ( G )  = pq imply that G is cyclic? Well, 

consider S3. You know that o ( S3 )  = 6 = 2.3, but S3 is not cyclic. In 

fact, we have the following result. 

Theorem: Let G be a group such that o ( G )  = 2p, where p is an odd 

prime, Then either G is cyclic or G is isomorphic to the dihedral group 

D2p of order 2p. 

 ( Recall that D2p = <  ( x, y | xP = e = Y2 and yx = x-ly }  > . )  

Proof: As in the proof of Theorem 9, there exists a subgroup P = < x > 

of order p with 

P   G and a subgroup Q = < y > of order 2, since p > 2. Since  ( 2, p )  = 

1, 

P  Q =  { e } .  o ( PQ )  = o ( G ) . 

G = PQ. 

Now, two cases arise, namely, when Q  G and when QG. 

|




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If Q   G, then G = P × Q. And then G = <xy>. 

If Q is not normal in G, then G must be non-abelian. 

 ( Remember that every subgroup of an abelian group is normal. )  

xy  yx. y-1xy  x. 

Now, since P = < x >  G, y-1xy  P. y-1xy = x‘, for some r = 2 ,... . , 

p - 1. 

Therefore, y-2xy2 = y-1 ( y-1xy )  = y–1xry =  ( y-1xy ) r =  ( xr ) r =  

 x =  since o ( y )  = 2. 

 . 

But o ( x )  = p. Therefore, by Theorem 4, p | r2 – 1, i.e., p |  ( r – 1 )   ( r 

+ 1 )  

 p |  (  r – 1  )  or p |  (  r + 1  ) . But 2  r  p – 1.    p = r + l, 

i.e., r = p – 1. So we see that 

y-1 xy = xr =‘ xp-1 = x-1 

So, G = PQ = <  { x, y | xp = e, y2 = e, y-1xy = x-1 > , which is exactly 

the same algebraic structure as that of D2p. 

 G = D2p =  { e, x, x2, ... , xp-1, y, xy, x2 y, . . . . , xp-1y] 

Example: What are the possible algebraic structures of a group of order 

6? 

Solution: Let G be a group of order 6. Then, by theorem 10, G  Z6 or G 

 Ds. You must have already noted that S3  D6. So, if G is not cyclic, 

then G  S3. 

Now, we know that if o ( G )  is a prime, then G is cyclic. Thus, groups 

of orders 2, 3, 5 and 7 are cyclic. This fact allows us to classify all 

groups whose orders are 1, 2, 3, 5, 6, 7 or 10. What about the structure of 

groups of order 4 = 22 and 9 = 32? Such groups are covered by the 

following result. 

Theorem: If G is a group of order p2, p a prime, then G is abelian. 




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We will not prove this result, since its proof is beyond the scope of this 

course. But, using this theorem, we, can easily classify groups of order 

p2. 

Theorem: Let G be a group such that o ( G )  = p2, where p is a prime. 

Then either G is cyclic or G = Zp × Zp, a direct product of two cyclic 

groups of order p. 

Proof: Suppose G has an element a of order p2. Then G = < a > . 

On the other hand, suppose G has no element of order. Then, for any x E 

G, o ( x )  = I or o ( x )  = p. 

Let x  G, x  e and H = < x > . Since x  e, o ( H )   1 

 o ( H )  = p. 

Therefore,  y  G such that y  H. Then, by the same reasoning, K = < 

y > is of order p. Both H and K are normal in G, since G is abelian. 

We want to show that G = H × K. For this, consider H  K. Now H  K  

H. 

 o ( H  K )  | o ( H )  = p. o ( H  K )  = 1 or o  ( H  K )  = p. 

If o ( H  K )  = p, then H  K = H, and by similar reasoning, H  K = K. 

But then, 

H = K.  y  H, a contradiction. 

o ( H  K )  = 1, i.e., H  K =  { e } . 

So, H  G, KG, H  K =  { e }  and o ( HK )  = p2 = o ( 6 ) . 

 G = H × K  Zp × Zp. 

So far we have shown the algebraic structure of all groups of order 1 to 

10, except groups of order 8. Now we will list the classification of 

groups of order 8. 

If G is an abelian group of order 8, then 

 ( i )  G  Z8, the cyclic group or order 8, or 

 ( ii )  G  Z4 × Z2, or 
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 ( iii )  G  Z2 × Z2 × Z2. 

If G is a non-abelian group of order 8, then 

 ( i )  G  Q8, the quaternion group, or 

 ( ii )  G  D8, the dihedral group. 

So, we have seen what the algebraic structure of any group of order 1, 2, 

. . . . , 10 must be. We have said that this classification is up to 

isomorphism. So, for example, any group of order 10 is isomorphic to 

Z10 or D10. It need not be equal to either of them. 

Check Your progress- 3 

5. If a prime P divides the order of a finite group G, then G contains a  

................... of order P. 

 ( a ) subgroup  ( b ) normal 

 ( c ) cycle  ( d ) permutation 

6. A .................. is a set, A together with an operations ―.‖. That 

combines any two elements a and b to form another element 

denoted a.b. 

 ( a ) cyclic  ( b ) permutation 

 ( c ) abelian  ( d ) normal 

4.5 FINITE ABELIAN GROUPS 

In Mathematica, the function finite abelian group 

[ { n1, n2 ... } ] represents the direct product of the cyclic groups of 

degrees n1 n2 ... 

4.5.1 Definition 

A finite abelian group is a set, A, together with an operation ―•‖ that 

combines any two elements a and b to form another element denoted a • 

b. The symbol ―•‖ is a general placeholder for a concretely given 

operation. To qualify as a finite abelian group, the set and operation, 
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 ( A, • ) , must satisfy five requirements known as the finite abelian 

group axioms: 

Closure 

For all a, b in A, the result of the operation a • b is also in A.  

Associatively  

For all a, b and c in A, the equation  ( a • b )  • c = a •  ( b • c )  holds.  

Identity Element  

There exists an element e in A, such that for all elements a in A, the 

equation e • a = a • e = a holds.  

Inverse Element  

For each a in A, there exists an element b in A such that a • b = b • a = e, 

where e is the identity element.  

Commutatively  

For all a, b in A, a • b = b • a.  

More compactly, a finite abelian group is a commutative group. A group 

in which the group operation is not commutative is called a ―non-finite 

abelian group‖ or ―non-commutative group‖. 

You should notice that any field is a finite abelian group under addition. 

Furthermore, under multiplication, the set of non-zero elements of any 

field must also form a finite abelian group. Of course, in this case the two 

operations are not independent–they are connected by the distributive 

laws. 

The definition of a finite abelian group is also useful in discussing vector 

spaces and modules. In fact, we can define a vector space to be a finite 

abelian group together with a scalar multiplication satisfying the relevant 

axioms. Using this definition of a vector space as a model, we can state 

the definition of a module in the following way. 
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4.5.2 Properties 

Let us assume that, If n is a natural number and x is an element of a finite 

abelian group G written additively, then nx can be defined as x + x + ... + 

x  ( n summands )  and  ( –n ) x = – ( nx ) . In this way, G becomes a 

module over the ring Z of integers. In fact, the modules over Z can be 

identified with the finite abelian groups. 

Theorems about finite abelian groups can often be generalized to 

theorems about modules over an arbitrary principal ideal domain. A 

typical example is the classification of finitely generated finite abelian 

groups which is a specialization of the structure theorem for finitely 

generated modules over a principal ideal domain. In the case of finitely 

generated finite abelian groups, this theorem guarantees that a finite 

abelian group splits as a direct sum of a torsion group and a free finite 

abelian group. The former may be written as a direct sum of finitely 

many groups of the form Z/pkZ for p prime, and the latter is a direct sum 

of finitely many copies of Z. 

If f, g : G  H are two group homomorphisms between finite abelian 

groups, then their sum 

f + g, defined by  ( f + g )  ( x )  = f ( x )  + g ( x ) , is again a 

homomorphism.  ( This is not true if H is a non-finite abelian group. )  

The set Hom  ( G, H )  of all group homomorphisms from G to H thus 

turns into a finite abelian group in its own right. 

Somewhat kind to the dimension of vector spaces, every finite abelian 

group has a rank. It is defined as the cardinality of the largest set of 

linearly independent elements of the group. The integers and the rational 

numbers have rank one, as well as every subgroup of the rationals. 

4.5.3 Notation 

There are two main notational conventions for finite abelian groups: ‗+‘ 

additive and ‗.‘ multiplicative. 
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Figure: Notational Conventions 

Generally, the multiplicative notation is the usual notation for groups, 

while the additive notation is the usual notation for modules. The 

additive notation may also be used to emphasize that a particular group is 

abelian, whenever both abelian and non-finite abelian groups are 

considered. 

Multiplication Table 

To verify that a finite group is abelian, a table  ( matrix )  - known as a 

Cayley table - can be constructed in a similar fashion to a multiplication 

table. If the group is G =  { g1 = e, g2, ..., gn }  under the operation ―, the  

( i, j ) ‘th entry of this table contains the product gi . gj. The group is 

abelian if and only if this table is symmetric about the main diagonal. 

This is true since if the group is abelian, then gi . gj = gj . gi. This implies 

that the  ( i, j ) ‘th entry of the table equals the  ( j, i ) ‘th entry, thus the 

table is symmetric about the main diagonal. 

Examples:  

1. For the integers and the operation addition ―+‖, denoted  ( Z,+ ) , 

the operation + combines any two integers to form a third integer, 

addition is associative, zero is the additive identity, every integer n 

has an additive inverse, –n, and the addition operation is 

commutative since m + n = n + m for any two integers m and n.  

2. Every cyclic group G is abelian, because if x, y are in G, then xy = 

aman = am + n = an + m = anam = yx. Thus the integers, Z, form a 

finite abelian group under addition, as do the integers modulo n, 

Z/nZ.  

Convention Operation Identity Powers Inverse 

Addition x + y 0 nx –x 

Multiplication x * y or xy e or 1 xn x–1 
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3. Every ring is a finite abelian group with respect to its addition 

operation. In a commutative ring the invertible elements, or units, 

form an abelian multiplicative group. In particular, the real numbers 

are a finite abelian group under addition, and the non-zero real 

numbers are a finite abelian group under multiplication.  

4. Every subgroup of a finite abelian group is normal, so each 

subgroup gives rise to a quotient group. Subgroups, quotients, and 

direct sums of finite abelian groups are again abelian.  

In general, matrices, even invertible matrices, do not form a finite abelian 

group under multiplication because matrix multiplication is generally not 

commutative. However, some groups of matrices are finite abelian 

groups under matrix multiplication - one example is the group of 2 x 2 

rotation matrices. 

Example: Find all finite abelian groups of order 108  ( up to 

isomorphism ) .  

Solution: The prime factorization is 108 = 22 · 33. There are two 

possible groups of order 4: Z4 and Z2 × Z2 . There are three possible 

groups of order 27: Z27 , Z9 × Z3 , and Z3 × Z3 × Z3 . This gives us the 

following possible groups:  

Z4 × Z27  

Z2 × Z2 × Z27  

Z4 × Z9 × Z3  

Z2 × Z2 × Z9 × Z3  

Z4 × Z3 × Z3 × Z3  

Z2 × Z2 × Z3 × Z3 × Z3 .  

Example: Let G and H be finite abelian groups, and assume that G × G is 

isomorphic to H × H. Prove that G is isomorphic to H.  

Solution: Let p be a prime divisor of |G|, and let q = pm be the order of a 

cyclic component of G. If G has k such components, then G × G has 2k 

components of order q. An isomorphism between G × G and H × H must 

preserve these components, so it follows that H also has k cyclic 
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components of order q. Since this is true for every such q, it follows that 

G  H 

Example: Let G be a finite abelian group which has 8 elements of order 

3, 18 elements of order 9, and no other elements besides the identity. 

Find  ( with proof )  the decomposition of Gas a direct product of cyclic 

groups.  

Solution: We have |G| = 27. First, G is not cyclic since there is no 

element of order 27. Since there are elements of order 9, G must have Z9 

as a factor. To give a total of 27 elements, the only possibility is G  Z9 

× Z3.  

Check: The elements 3 and 6 have order 3 in Z9, while 1 and 2 have 

order 3 in Z3. Thus, the following 8 elements have order 3 in the direct 

product:  ( 3, 0 ) ,  ( 6, 0 ) ,  ( 3, 1 ) ,  ( 6, 1 ) ,  ( 3, 2 ) ,  ( 6, 2 ) , 

 ( 0, 1 ) , and  ( 0, 2 ) . 

Example: Let G be a finite abelian group such that |G| = 216. If | 6 G | = 

6, determine G up to isomorphism.  

Solution: We have 216 = 23 · 33, and 6G  Z2 × Z3 since it has order 6. 

Let H be the Sylow 2-subgroup of G, which must have 8 elements. Then 

multiplication by 3 defines an automorphism of H, so we only need to 

consider 2H. Since 2H  Z2, we know that there are elements not of 

order 2, and that H is not cyclic, since 2 Z8  Z4. We conclude that H  

Z4 × Z2.  

A similar argument shows that the Sylow 3-subgroup K of G, which has 

27 elements, must be isomorphic to Z9 × Z3.  

Using the decomposition, we see that 

G  Z4 × Z2 × Z9 × Z3.  

 ( If you prefer the form of the decomposition, you can also give the 

answer in the form G  Z36 × Z6. )   

Example: Apply both structure theorems to give the two decompositions 

of the finite abelian group   216Z
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Solution:    ×   Z2 × Z2 ×   

Since 27 is a power of an odd prime, it follows that  is cyclic. This 

can also be shown directly by guessing that 2 is a generator.  

Since   has order 33 - 32 = 18, an element can only have order 1, 2, 3, 

6, 9 or 18. We have  

22 = 4,  

23 = 8,  

26  82  10, and  

29  23 · 26  8 · 10  -1,  

so it follows that 2 must be a generator.  

We conclude that   Z2 × Z2 × Z18.  

To give the first decomposition, states that any finite abelian group is 

isomorphic to a direct product of cyclic groups of prime power order. In 

this decomposition we need to split Z18 up into cyclic subgrops of prime 

power order, so we finally get the decomposition  

  Z2 × Z2 × Z2 × Z9.  

On the other hand, the second decomposition, where any finite finite 

abelian group is written as a direct product of cyclic groups in which the 

orders any component is a divisor of the previous one. To do this we 

need to group together the largest prime powers that we can. In the first 

decomposition, we can combine Z2 and Z9 to get Z18 as the first 

component.  We end up with  

  Z18 × Z2 × Z2  

as the second way of breaking  up into a direct product of cyclic 

subgroups. 

Example: Let G and H be finite abelian groups, and assume that they 

have the following property. For each positive integer m, G and H have 

216Z

8Z

27Z

27Z

27Z

27Z

216Z

216Z

216Z

216Z
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the same number of elements of order m. Prove that G and H are 

isomorphic.  

Solution: We give a proof by induction on the order of |G|. The 

statement is clearly true for groups of order 2 and 3, so suppose that G 

and H are given, and the statement holds for all groups of lower order. 

Let p be a prime divisor of |G|, and let Gp and Hp be the Sylowp-

subgroups of G and H, respectively. Since the Sylow subgroups contain 

all elements of order a power of p, the induction hypothesis applies to Gp 

and Hp. If we can show that Gp Hp for all p, then it will follow that G H, 

since G and H are direct products of their Sylow subgroups.  

Let x be an element of Gp with maximal order q = pm. Then < x > is a 

direct factor of Gp, so there is a subgroup G‘ with Gp = < x > × G‘. By 

the same argument we can write Hp = < y > × H‘, where y has the same 

order as x.  

Now consider < xp > × G‘ and < yp > × H‘. To construct each of these 

subgroups we have removed elements of the form  ( xk, g‘ ) , where xk 

has order q and g‘ is any element of G‘. Because x has maximal order in 

a p-group, in each case the order of g‘ is a divisor of q, and so  ( xk, g‘ )  

has order q since the order of an element in a direct product is the least 

common multiple of the orders of the components. Thus to construct 

each of these subgroups we have removed  ( pm – pm-1 )  · |G‘| 

elements, each having order q. It follows from the hypothesis that we are 

left with the same number of elements of each order, and so the induction 

hypothesis implies that < xp > × G‘ and < yp > × H‘ are isomorphic. But 

then G‘  H‘, and so Gp  Hp, completing the proof.  

Proposition: Every finite abelian group has a natural structure as a 

module over the ring Z. 

As with vector spaces, one goal is to be able to express a finite abelian 

group in terms of simpler building blocks. For vector spaces we can use 

one-dimensional spaces as the building blocks; for finite abelian groups, 

it seems natural to use the simple finite abelian groups. 
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Recall that in an arbitrary group G, a subgroup N  G is called a normal 

subgroup if gxg–1  N, for all x  N and all g G. Then G is said to be 

a simple group if its only normal subgroups are  { 1 }  and G. If the 

group A is abelian, then all subgroups are normal, and so A is simple iff 

its only subgroups are the trivial subgroup  ( 0 )  and the improper 

subgroup A. The same definition is given for modules: a nonzero module 

M is a simple module if its only submodules are  ( 0 )  and M. When you 

view a finite abelian group as a Z-module, then, of course, the two 

definitions coincide. 

Any cyclic finite abelian group is isomorphic to Z or Zn, for some n. 

Outline of the Proof: Let A be a cyclic finite abelian group that is 

generated by the single element a. Define the group homomorphism f : Z 

 A by setting f ( n )  = na, for all n  Z. Note that f maps Z onto A 

since f ( Z )  = Za = A. If f is one-to-one, then A is isomorphic to Z. If f 

is not 

one-to-one, we need to use the fundamental homomorphism theorem and 

the fact that every subgroup of Z is cyclic to show that A is isomorphic 

to Zn, where n is the smallest positive integer such that na = 0. 

Proposition: A finite abelian group is simple iff it is isomorphic to Zp, 

for some prime number p. 

Proof: First, let A be a finite abelian group isomorphic to Zp, where p is 

a prime number. The isomorphism preserves the subgroup structure, so 

we only need to know that Zp has no proper nontrivial subgroups. This 

follows from the general correspondence between subgroups of Zn and 

divisors of n, since p is prime precisely when its only divisors are ±1 and 

±p, which correspond to the subgroups Zp and  ( 0 ) , respectively. 

Conversely, suppose that A is a simple finite abelian group. Since A is 

nonzero, pick any nonzero element a  A. Then the set Za =  { na | n  Z 

}  is a nonzero subgroup of A, so by assumption it must be equal to A. 

This shows that A is a cyclic group. Furthermore, A can‘t be infinite, 

since then it would be isomorphic to Z and would have infinitely many 

subgroups. We conclude that A is finite, and hence isomorphic to Zn, for 
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some n. Once again, the correspondence between subgroups of Zn and 

divisors of n shows that if Zn is simple, then n must be a prime number. 

A module M is said to be semisimple if it can be expressed as a sum  ( 

possibly infinite )  of simple submodules. Although the situation for 

finite abelian groups is more complicated than for vector spaces, it is 

natural to ask whether all finite abelian groups are semisimple. 

Example: The group Z4 is not a semisimple Z-module. First, Z4 is not a 

simple group. Secondly, it cannot be written non-trivially as a direct sum 

of any subgroups, since its subgroups lie in a chain Z4  2Z4   ( 0 ) , 

and no two proper nonzero subgroups intersect in  ( 0 ) . 

Example: The group Z6 is a semisimple Z-module. To see this, define f : 

Z6  Z2  Z3 by setting f ( 0 )  =  ( 0, 0 ) , f ( 1 )  =  ( 1, 1 ) , f ( 2 )  =  ( 

0, 2 ) , f ( 3 )  =  ( 1, 0 ) , f ( 4 )  =  ( 0, 1 ) , f ( 5 )  =  ( 1, 2 ) . You can 

check that this defines an isomorphism, showing that Z6 is isomorphic to 

a direct sum of simple finite abelian groups. 

The function defined in the example is a special case of a more general 

result that is usually referred to as the Chinese remainder theorem  ( this 

result is given more generally for rings. The proof of the next proposition 

makes use of the same function. 

Proposition: If k = mn, where m and n are relatively prime integers, then 

Zk is isomorphic to Zm  Zn. 

Outline of the Proof: Define f : Zk  Zm  Zn by f ( [x]k )  =  ( [x]m, 

[x]n ) , for all x  Z. Here I have been a bit more careful, by using [x]k 

to denote the congruence class of x, modulo k. It is not hard to show that 

f preserves addition. The sets Zk and Zm  Zn are finite and have the 

same number of elements, so f is one-to-one iff it is onto, and therefore 

proving one of these conditions will give the other.  ( Actually, it isn‘t 

hard to see how to prove both conditions. )  Showing that f is one-to-one 

depends on the fact that if x is an integer having both m and n as factors, 

then it must have mn as a factor since m and n are relatively prime. On 

the other hand, the usual statement of the Chinese remainder theorem is 

precisely the condition that f is an onto function. 
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Corollary: Any finite cyclic group is isomorphic to a direct sum of 

cyclic groups of prime power order.The corollary depends on an 

important result in Z: every positive integer can be factored into a 

product of prime numbers. Grouping the primes together, the proof of the 

corollary uses induction on the number of distinct primes in the 

factorization. 

This basic result has implications for all finite groups. The cyclic group 

Zn also has a ring structure, and the isomorphism that proves the 

corollary is actually an isomorphism of rings, not just of finite abelian 

groups. To use this observation, suppose that A is a finite finite abelian 

group. Let n be the smallest positive integer such that na = 0 for all a  

A.  ( This number might be familiar to you in reference to a 

multiplicative group G, where it is called the exponent of the group, and 

is the smallest positive integer n such that gn = 1 for all g  G. )  

You can check that because na = 0 for all a  A, we can actually give A 

the structure of a Zn-module. 

Next we can apply a general result that if a ring R can be written as a 

direct sum R = I1  . . .In of two-sided ideals, then each Ij is a ring in 

its own right, and every left R-module M splits up into a direct sum M1 

Mn, where Mj is a module over Ij . Applying this to Zn, we can 

write Zn as a direct sum of rings of the form Zpk , where p is a prime, 

and then the group A breaks up into A1  An, where each Aj is a 

p-group, for some prime p.  ( Recall that a group G is a p-group if every 

element of G has order p. )  This argument proves the next lemma.  ( You 

can also prove it using Sylow subgroups, if you know about them. )  

Every finite abelian group can be written as a direct sum of p-groups. 

The decomposition into p-groups occurs in one and only one way. Then 

it is possible to prove that each of the p-groups splits up into cyclic 

groups of prime power order, and so we have the following fundamental 

structure theorem for finite abelian groups. 

Theorem: Any finite abelian group is isomorphic to a direct sum of 

cyclic groups of prime power order. 



Notes   

78 

A proof of the fundamental structure theorem, let us first discuss some of 

the directions it suggests for module theory. First of all, the hope was to 

construct finite abelian groups out of ones of prime order, not prime 

power order. The only way to do this is to stack them on top of each 

other, instead of having a direct sum in which the simple groups are lined 

up one beside the other. To see what I mean by ―stacking‖ the groups, 

think of Z4 and its subgroups Z4  2Z4 ( 0 ) . 

The subgroup 2Z4 =  { 0, 2 }  Z2 is simple, and so is the factor module 

Z4/2Z4  Z2. This having Z2 stacked on top of Z2, and the group is 

structured so tightly that you can‘t even find an isomorphism to 

rearrange the factors. 

A module M is said to have a composition series of length n if there is a 

chain of submodules M = M0  M1  Mn =  ( 0 )  for which each 

factor module Mi–1/Mi is a simple module. Thus, we would say that Z4 

has a composition series of length 2. This gives a measurement that 

equals the dimension, in the case of a vector space. It is also true that the 

length of a cyclic group of order pn is precisely n. It can be shown that if 

M has a composition series of length n, then every other composition 

series also has length n, so this is an invariant of the module. 

Furthermore, the same simple modules show up in both series, with the 

same multiplicity. 

The idea of a composition series is related to two other conditions on 

modules. A module is said to satisfy the ascending chain condition, or 

ACC, if it has no infinite chain of ascending submodules; it is said to 

satisfy the descending chain condition, or DCC, if it has no infinite chain 

of descending submodules. Modules satisfying these conditions are 

called Noetherian or Artinian, respectively. A module has finite length iff 

it satisfies both the ACC and DCC. As an example to keep in mind, let‘s 

look at the ring of integers, which has ACC but not DCC. Since mZ nZ 

iff n | m, generators get smaller as you go up in Z, and larger as you go 

down. Any set of positive integers has a smallest element, so we can‘t 

have any infinite ascending chains, but, for example, we can construct 

the infinite descending chain 2Z  4Z 8Z ... . 
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The cyclic groups of prime power order play a crucial role in the 

structure of finite abelian groups precisely because they cannot be split 

up any further. A module M can be expressed as a direct sum of two 

submodules M1 and M2 iff M1  M2 =  ( 0 )  and M1 + M2 = M. In the 

case of a cyclic group of prime power order, the subgroups form a 

descending chain, and so any two nonzero subgroups have a nonzero 

intersection. A module is called indecomposable if it cannot be written as 

a direct sum of two nonzero submodules. With this terminology, the 

cyclic groups of prime power order are precisely the indecomposable 

finite abelian groups. The major results in this direction are  ( the Krull-

Schmidt theorem ) , which show that any module with finite length can 

be written as a direct sum of indecomposable submodules, and this 

decomposition is unique up to isomorphism and the order of the 

summands. 

After this rather lengthy preview, or review, as the case may be, it is time 

to move on to study general rings and modules. The next results present a 

proof of the structure theorem for finite abelian groups, but you should 

feel free to skip them. 

Lemma: Let A be a finite abelian p-group. 

 ( a )  Let a  A be an element of maximal order, and let b + Za be any 

coset of A/Za. Then there exists d  A such that d + Za = b + Za 

and Zd  Za =  ( 0 ) . 

 ( b )  Let a  A be an element of maximal order. Then there exists a 

subgroup B with A  Za  B. 

Proof:  ( a )  The outline of part  ( a )  is to let us be the smallest positive 

integer such that sb  Za. Then we solve the equation sb = sx for 

elements x Za and let d = b – x. 

Using o ( x )  for the order of an element x, let us be the order of b + Za 

in the factor group G/Za. Then sb  Za, and we can write sb =  ( qt ) a 

for some exponent qt such that t = p for some  and 

p  q. Then qa is a generator for Za, since q is relatively prime too ( a ) . 

Since s is a divisor of the order of b, we have o ( b ) /s = o ( sb )  = o (  ( 

qt ) a )  = o ( a ) /t, or simply, o ( b )  . t = o ( a )  . s. All of these are 
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powers of p, and so o ( b )   o ( a )  implies that s|t, say t = ms. Then x =  

( qm ) a is a solution of the equation sb = sx. If d = b – x, then d + Za = b 

+ Za and so sd = sb – sx = sb – sb = 0.  

Therefore, Zd  Za =  ( 0 ) , since nd  Za implies n ( b – x )  = nb – nx  

Za. Thus, nb  Za implies n ( b + Za )  = Za in G/Za, so s|n and nd = 0. 

 ( b )  The outline of this part is to factor out Za and use induction to 

decompose A/Za into a direct sum of cyclic groups. Then part  ( a )  can 

be used to choose the right preimages of the generators of A/Za to 

generate the complement B of Za. 

We use induction on the order of A. If |A| is prime, then A is cyclic and 

there is nothing to prove. Consequently, we may assume that the 

statement of the lemma holds for all groups of order less than |A| = p. If 

A is cyclic, then we are done. If not, let Za be a maximal cyclic 

subgroup, and use the induction hypothesis repeatedly to write A/Za as a 

direct sum B1 B2 Bn of cyclic subgroups. 

We next use part  ( a )  to choose, for each i, a coset ai + Za that 

corresponds to a generator of Ai such that Zai  Za =  ( 0 ) . We claim 

that A  Za  B for the smallest subgroup B = Za1 + Za2 + · · · + Zan 

that contains a1, a2, . . ., an. 

First, if x  Za ( Za1 +· · · + Zan ) , then x = m1a1 +· · · + mnan  Za 

for some coefficients m1, . . . ,mn. Thus x + Za =  ( m1a1 + · · · + mnan )  

+ Za = Za, and since A/Za is a direct sum, this implies that 

miai + Za = Za for each i. But then miai  Za, and so miai = 0 since Zai  

Za =  ( 0 ) . Thus x = 0. 

Next, given x  A, express the coset x + Za as  ( m1a1 +· · · + mnan )  + 

Za for coefficients m1, . . ., mn. Then x  xZa, and so x = ma + m1a1 + · 

· · + mnan for some m. 

Thus, we have shown that Za  B =  ( 0 )  and A = Za + B, so A  Za  

B. 

Theorem ( Fundamental Theorem of Finite Abelian Groups ) : Any 

finite abelian group is isomorphic to a direct sum of cyclic groups of 



Notes 

81 

prime power order. Any two such decompositions have the same number 

of factors of each order. 

Proof: We first decompose any finite abelian group A into a direct sum 

of p-groups, and then we can use the previous lemma to write each of 

these groups as a direct sum of cyclic subgroups. 

Uniqueness is shown by induction on |A|. It is enough to prove the 

uniqueness for a given p-group. Suppose that 

Zp1  Zp Zpn = ZpZp Zpm 

where n and m. Consider the 

subgroups in which each element has been multiplied by p. By induction, 

1 – 1 = 1 – 1, . . ., which gives , . . ., with the possible 

exception of the i‘s and j‘s that equal 1. But the groups have the same 

order, and this determines that each has the same number of factors 

isomorphic to Zp. This completes the proof. 

 

Check Your progress-4 

7. In a finite abelian group, each element is in a conjugacy class by 

itself and the character table involve powers of a single element 

known as a .................. 

 ( a ) group generator  ( b ) group connector 

 ( c ) group and subgroup  ( d ) normal group element 

8. In mathematics, the function finite abelian group  { n1, n2, ....  }  

represents .................. product of the cyclic group of degree in1n2 

.................. 

 ( a ) direct  ( b ) indirect 

 ( c ) single  ( d ) external 

9. In commutative ring .................. the elements, or unit, from an 

abelian multiplication groups. 

 ( a ) inversible  ( b ) vertible 

 ( c ) direct  ( d ) finite 
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10. Every subgroup of a finite abelian group is normal, so each 

subgroup gives rest to a .................. group. 

 ( a ) cyclic  ( b ) permutation 

 ( c ) quotient  ( d ) multiplicative 

 

4.6 LET US SUM UP     

The definition and examples of external direct products of groups.  The 

definition and examples of internal direct products of normal subgroups. 

If  ( m, n )  = 1, then Zm × Zn  Zmn. o ( H × K )  = o ( H )  o ( K ) . The 

statement and application of Sylow‘s theorems, which state that: Let G 

be a finite group of order pnm, where p is a prime and p  m. Then G 

contains a subgroup of order pk  k = 1, ... , n;  any two Sylow p-

subgroups are conjugate in G; the number of distinct Sylow p-subgroups 

of G is congruent to 1  ( mod p )  and divides o ( G )   ( in fact, it divides 

m ) . 

Let o ( G )  = pq, p a prime, p > q, q  p – 1. Then G is cyclic. Let o ( G )  

= p2, p a prime. Then G is abelian. G is cyclic or G  Zp × Zp.  The 

classification of groups of order 1 to 10, which we give in the following 

table:  

 

A finite abelian group is a set, A, together with an operation ―•‖ that 

combines any two elements a and b to form another element 

denoted a • b. The symbol ―•‖ is a general placeholder for a 

concretely given operation. To qualify as a finite abelian group, the 

O(G) Algebraic Structure 

1 {e} 

2 Z2 

3 Z3 

4 Z4 or Z2 × Z2 

5 Z5 

6 Z6 or S3 

7 Z7 

8 Z8 or Z4 × Z2 or Z2 × Z2 × Z2 (if G is abelian) 

Q8 or D8 (if G is non-abelian) 

9 Z9 or Z3 × Z3 

10 Z10 or D10 
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set and operation,  ( A, • ) , must satisfy five requirements known as 

the finite Abelian group axioms. Generally, the multiplicative 

notation is the usual notation for groups, while the additive notation 

is the usual notation for modules. The additive notation may also be 

used to emphasize that a particular group is abelian, whenever both 

abelian and non-finite abelian groups are considered. 

For the integers and the operation addition ―+‖, denoted  ( Z,+ ) , the 

operation + combines any two integers to form a third integer, 

addition is associative, zero is the additive identity, every integer n 

has an additive inverse, ―n, and the addition operation is 

commutative since m + n = n + m for any two integers m and n.  

Every cyclic group G is abelian, because if x, y are in G, then xy = 

aman = am + n = an + m = anam = yx. Thus the integers, Z, form a 

finite abelian group under addition, as do the integers modulo n, 

Z/nZ.  

 

4.7 KEYWORDS 

External direct product: Let  ( G1, *1 ) ,  ( G2, *2 ) , . . . . . ,  ( Gn, *n )  

be n groups. Their external direct product is the group  ( G, * ) , where 

G = G1 × G2 ..... × Gn and 

Thus, Rn is the external direct product of n copies of R. 

Internal direct product: Let H and K be normal subgroups of a group 

G. We call G the internal direct product of H and K if 

G = HK and H  K =  { e } . 

We write this fact as G = H × K. 

Sylow p-subgroup: Let G be a finite group and p be a prime such that 

pn | o ( G )  but pn+1 o ( G ) , for some n 1. Then a subgroup of G of 

order pn is called a Sylow p-subgroup of G. 
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Finite abelian group: A finite abelian group is a set, A, together with an 

operation ―•‖ that combines any two elements a and b to form another 

element denoted a • b.  

Multiplication: The multiplicative notation is the usual notation for 

groups, while the additive notation is the usual notation for modules. 

Cyclic group: Every cyclic group G is abelian, because if x, y are in G, 

then xy = aman = am + n = 

an + m = anam = yx.  

 

4.8 QUESTIONS FOR REVIEW 

1. Show that the binary operation * on G is associative. Find its 

identity element and the inverse of any element  ( x, y )  in G. 

2. Show that G1 × G2 = G2 × G1, for any two groups G1 and G2. 

3. Show that G1 × G2 is the product of its normal subgroup H = G1 ×  

{ e2 }  and K =  { e1 }  × G2. Also show that  ( G1 ×  { e2 }  )    (  

{ e1 }  × G2 )  =  {  ( e1, e2 )  } . 

4. Prove that P ( G1 × G3 )  = Z ( G1 )  × Z ( G2 ) , where Z ( G3 )  

denotes the centre of G  ( see Theorem 2 of unit 3 ) . 

5. Let A and B be cyclic groups of order m and n, respectively, where  

( m, n )  = 1. Prove that 

A × B is cyclic of order mn. 

  ( Hint: Define f : Z  Zm × Zn : f ( r )  =  ( r + mZ, r + nZ ) . Then 

apply the Fundamental theorem of Homomorphism to show that Zm 

× Zn  Zmn. 

6. Let H and K be normal subgroups of G which satisfy  ( a )  of 

Theorem 1. Then show that 

G = H × K. 

7. Use Theorem 2 to prove Theorem 3. 
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8. Compute all possible finite abelian groups of order n. What is the 

largest n for which it will work? 

9. Find all finite abelian group of order less than or equal to 40 up to 

isomorphism. 

10. Find all finite abelian groups of order 200 to 720 up to 

isomorphism. 

11. Show that the infinite direct product G = Z2 × Z2 × . . . is not 

finitely generated. 

12. Let G be a finite abelian group of order m. If n divides m, prove that 

G has a subgroup of order n. 

 

4.9 SUGGESTED READINGS AND 

REFERENCES 

11. Thomas W Judson  ( 2013 ) . Abstract Algebra: Theory and 

Applications. Orthogonal Publishing. 

12. Paul B. Garrett  ( 2007 ) . Abstract Algebra. Chapman and Hall/CRC. 

13. Stephen Lovett  ( 2016 ) . Abstract Algebra: Structures and 

Applications. Chapman and Hall/CRC 

14. Dan Saracino  ( 2008 ) .Abstract Algebra; A First Course. Waveland 

Press, Inc.; 2 edition  

15. Mitchell and Mitchell  ( 2007 ) . An Introduction to Abstract Algebra. 

Wadsworth Publishing 

 

4.10 ANSWERS TO CHECK YOUR 

PROGRESS 

1.  ( b )   ( answer for Check your Progress-1 Q.1 )  

2.  ( a )   ( answer for Check your Progress-1 Q.2 )  

3.  ( c )   ( answer for Check your Progress-2 Q.3 )  
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4.  ( a )   ( answer for Check your Progress-2 Q.4 )  

5.  ( a )        ( answer for Check your Progress-3 Q.5 )  

6.  ( c )   ( answer for Check your Progress-3 Q.6 )  

7.  ( a )   ( answer for Check your Progress-4 Q.7 )  

8.  ( a )   ( answer for Check your Progress-4 Q.8 )  

9.  ( a )   ( answer for Check your Progress-4 Q.9 )  

10.  ( c )            ( answer for Check your Progress-4 Q.10 )  
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UNIT - 5:CLASS EQUATION  

STRUCTURE 

5.0 Objectives 

5.1 Introduction 

5.2 Conjugate Subgroup 

5.3 Let Us Sum Up 

5.4 Keywords 

5.5 Questions For Review 

5.6 Suggested Readings And References 

5.7 Answers To Check Your Progress 

5.0 OBJECTIVES 

After studying this unit, you should be able to: 

 Define conjugate subgroup  

 Discuss conjugacy class of an element 

5.1 INTRODUCTION 

In the last unit, you have studied about finite abelian group. If G is a 

group and X is an arbitrary set, a group action of an element g G and x 

 X is a product, gx giving in x many problem in algebra may best be 

attached in group actions. In this unit, you will get the information 

related to conjugate elements. 

5.2 CONJUGATE SUBGROUP   

Definition: Let G be a group, and let x, y be elements of G. Then y is 

said to be a conjugate of x if there exists an element a in G such that y = 

axa-1. 

If H and K are subgroups of G, then K is said to be a conjugate 

subgroup of H if there exists an element a in G such that K = aHa-1.  
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Proposition:  

 ( a )  Conjugacy of elements defines an equivalence relation on any 

group G.  

 ( b )  Conjugacy of subgroups defines an equivalence relation on the set 

of all subgroups of G.  

Definition: Let G be a group. For any element x in G, the set  

 {  a in G | axa-1 = x  }   

is called the centralizer of x in G, denoted by C ( x ) . 

For any subgroup H of G, the set  

 {  a in G | aHa-1 = H  }   

is called the normalizer of H in G, denoted by N ( H ) .  

Proposition : Let G be a group and let x be an element of G. Then C ( x 

)  is a subgroup of G.  

Proposition : Let x be an element of the group G. Then the elements of 

the conjugacy class of x are in one-to-one correspondence with the left 

cosets of the centralizer C ( x )  of x in G.  

Example: Two permutations are conjugate in Sn if and only if they have 

the same shape  ( i.e., the same number of disjoint cycles, of the same 

lengths ) . Thus, in particular, cycles of the same length are always 

conjugate.  

Theorem : [Conjugacy class Equation] Let G be a finite group. Then  

| G | = | Z ( G )  | + [ g : C ( x )  ]  

where the sum ranges over one element x from each nontrivial conjugacy 

class.  

Definition: A group of order pn, with p a prime number and n  1, is 

called a p-group.  

Theorem : [Burnside] Let p be a prime number. The center of any p-

group is nontrivial.  

Corollary : Any group of order p2  ( where p is prime )  is abelian.  



Notes 

89 

Theorem : [Cauchy] If G is a finite group and p is a prime divisor of the 

order of G, then G contains an element of order p. 

Example: Prove that if the center of the group G has index n, then every 

conjugacy class of G has at most n elements.  

Solution: The conjugacy class of an element a in G has [G : C ( a ) ] 

elements. Since the center Z ( G )  is contained in C ( a ) , we have [G : C 

( a ) ] [G : Z ( G ) ] = n.  ( In fact, [G : C ( a ) ] must be a divisor of n. )  

 Example: Find all finite groups that have exactly two conjugacy 

classes.  

Solution: Suppose that |G| = n. The identity element forms one 

conjugacy class, so the second conjugacy class must have n-1 elements. 

But the number of elements in any conjugacy class is a divisor of |G|, so 

the only way that n-1 is a divisor of n is if n = 2.  

Example: Let G = D12, given by generators a, b with |a|=6, |b|=2, and 

ba=a-1b. Let H =  {  1, a3, b, a3b  } . Find the normalizer of H in G and 

find the subgroups of G that are conjugate to H.  

Solution: The normalizer of H is a subgroup containing H, so since H 

has index 3, either NG  ( H )  = H or NG  ( H )  = G. Choose any element 

not in H to do the first conjugation.  

aHa-1 =  {  1, a ( a3 ) a5, aba5, a ( a3b ) a5  }  =  {  1, a3, a2b, a5b  }   

This computation shows that a is not in the normalizer, so NG  ( H )  = 

H. Conjugating by any element in the same left coset aH =  {  a, a4, ab, 

a4b  }  will give the same subgroup. Therefore, it makes sense to choose 

a2 to do the next computation.  

a2Ha-2 =  {  1, a3, a2ba4, a2 ( a3b ) a4  }  =  {  1, a3, a4b, ab  }   

Comment: It is interesting to note that an earlier problem shows that b, 

a2b, and a4b form one conjugacy class, while ab, a3b, and a5 b form a 

second conjugacy class. In the above computations, notice how the orbits 

of individual elements combine to give the orbit of a subgroup. 

Example: Write out the class equation for the dihedral group Dn. Note 

that you will need two cases: when n is even, and when n is odd.  
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Solution: When n is odd the center is trivial and elements of the form ai 

b are all conjugate. Elements of the form ai are conjugate in pairs; am  

a-m since a2m  1. We can write the class equation in the following 

form:  

|G| = 1 +  (  ( n-1 ) /2 )  · 2 + n  

When n is even, the center has two elements.  ( The element an/2 is 

conjugate to itself since it is equal to a-n/2. This shows that Z ( G )  =  {  

1, an/2  } . )  Therefore, elements of the form ai b split into two 

conjugacy classes. In this case the class equation has the following form:  

|G| = 2 +  (  ( n-2 ) /2 )  · 2 + 2 ·  ( n/2 )   

 Example: Show that for all n  4, the centralizer of the element  ( 

1,2 )  ( 3,4 )  in Sn has order 8·  ( n-4 ) !. Determine the elements in the 

centralizer of  (  ( 1,2 )  ( 3,4 )  ) .  

Solution: The conjugates of a =  ( 1,2 )  ( 3,4 )  in Sn are the 

permutations of the form  ( a,b )   ( c,d ) . The number of ways to 

construct such a permutation is  

n ( n-1 ) /2 ·  ( n-2 )  ( n-3 ) /2 · 1/2 ,  

and dividing this into n! gives the order 8 ·  ( n-4 ) ! of the centralizer.  

We first compute the centralizer of a in S4. The elements  ( 1, 2 )  and  ( 

3, 4 )  clearly commute with 

 ( 1, 2 )   ( 3, 4 ) . Note that a is the square of b =  ( 1, 3, 2, 4 ) ; it follows 

that the centralizer contains 

< b >, so b3 =  ( 1, 4, 2, 3 )  also belongs. Computing products of these 

elements shows that we must include  ( 1, 3 )  ( 2, 4 )  and  ( 1, 4 )  ( 2, 3 

) , and this gives the required total of 8 elements.  

To find the centralizer of a in Sn, any of the elements listed above can be 

multiplied by any permutation disjoint from  ( 1, 2 )  ( 3, 4 ) . This 

produces the required total |C ( a ) | = 8 ·  ( n-4 ) !.  

Check Your progress-1 

1. Let G be a group and let x be an elements of the G. Then L ( x )  is a 

............... of G. 
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 ( a ) Normal subgroup  ( b )  Cyclic subgroup 

 ( c ) Subgroup  ( d )  Permutation group 

2. Any group of order p2 is ............... 

 ( a ) permutation  ( b )  abelian 

 ( c ) cyclic  ( d )  finite 

3. If G is a ............... group and P is a prime divisor of the order of G, 

then G contains an element of order P. 

 ( a ) direct  ( b )  external 

 ( c ) internal  ( d )  finite 

4. Let P be a prime number. The center of any P-group is ............... 

 ( a ) trivial  ( b )  non-trivial 

 ( c ) finite  ( d )  infinite 

5. A group of order pn, with P is a prime number and n ............... is 

called a p-group. 

 ( a ) a = 1  ( b )  b > 1 

 ( c ) c < 1  ( d )  d  1 

. 

5.3 LET US SUM UP     

Let G be a group, and let x,y be elements of G. Then y is said to be a 

conjugate of x if there exists an element a in G such that y = axa-1.  If 

H and K are subgroups of G, then K is said to be a conjugate subgroup 

of H if there exists an element a in G such that K = aHa-1. Conjugacy of 

elements defines an equivalence relation on any group G. Conjugacy of 

subgroups defines an equivalence relation on the set of all subgroups of 

G. Let G be a group. For any element x in G, the set  {  a in G | axa-1 = 

x  }   is called the centralizer of x in G, denoted by C ( x ) . 

For any subgroup H of G, the set  {  a in G | aHa-1 = H  }   is called the 

normalizer of H in G, denoted by N ( H ) .  Let G be a group and let x 

be an element of G. Then C ( x )  is a subgroup of G. Let x be an element 
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of the group G. Then the elements of the conjugacy class of x are in one-

to-one correspondence with the left cosets of the centralizer C ( x )  of x 

in G.  

 

5.4 KEYWORDS 

Conjugate element: If H and K are subgroups of G, then K is said to be 

a conjugate subgroup of H if there exists an element a in G such that K 

= aHa-1. 

Centralizer: Let G be a group. For any element x in G, the set  

 {  a in G | axa-1 = x  }   

 is called the centralizer of x in G, denoted by C ( x ) . 

5.5 QUESTIONS FOR REVIEW 

1. Compute the G-equivalence classes of X for each of the G-sets X =  

{ 1, –2, 24, 5, 6 }  and 

G =  {  ( 1 ) ,  ( 1, 2 )   ( 3, 4, 5 )  ;  ( 1 2 )   ( 3 4 5 ) ,  ( 1 2 )   ( 3 8 4 

)  }  for each x  X verify |G| = |Ox| |Gx|. 

2. Write the class equation for S5 and for |Gx| 

3. Let P be prime. Show that the number of different abelian groups of 

order Pn is the same as the number of conjugacy class in Sn. 

4. , show that for any g  G, gc ( a ) g-1 = c ( gag-1 ) . 

5. Let |G| = pn and suppose that |Z ( G ) | = pn-1 for p prime. Prove 

that G is abelian. 

6. Let G be a group with order pn, where p is prime and X a finite G-

set. If XG =  { x  X : gx = x for all g  G }  is the set of elements 

in X fixed by the group actions, then prove that 

|X| = |XG|  ( modp ) . 
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5.6 SUGGESTED READINGS AND 

REFERENCES 

16. Lalji Prasad  ( 2016 ) . Modern Abstract Algebra. Paramount 

Publication 

17. Stephen Lovett  ( 2016 ) . Abstract Algebra: Structures and 

Applications. Chapman and Hall/CRC 

18. Dan Saracino  ( 2008 ) .Abstract Algebra; A First Course. Waveland 

Press, Inc.; 2 edition  

19. Mitchell and Mitchell  ( 2007 ) . An Introduction to Abstract Algebra. 

Wadsworth Publishing 

20. John B. Fraleigh  ( 2003 ) . An Introduction to Abstract Algebra  ( 
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5.7 ANSWERS TO CHECK YOUR 

PROGRESS 

10.  ( c )   ( answer for Check your Progress-1 Q.1 )  

11.  ( b )   ( answer for Check your Progress-1 Q.2 )  

12.  ( d )   ( answer for Check your Progress-1 Q.3 )  

13.  ( b )   ( answer for Check your Progress-1 Q.4 )  

14.  ( d )   ( answer for Check your Progress-1 Q.5 )  
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UNIT - 6: CAUCHY’S THEOREM 

STRUCTURE 

6.0 Objectives 

6.1 Introduction 

6.2 Homotopy 

6.3 Cauchy‘s Theorem 

6.4 Let Us Sum Up 

6.5 Keywords 

6.6 Questions For Review 

6.7 Suggested Readings And References 

6.8 Answers To Check Your Progress 

6.0 OBJECTIVES 

After studying this unit, you should be able to: 

 Define homotopy  

 Discuss the Cauchy's theorem  

 Describe examples of Cauchy's theorem 

6.1 INTRODUCTION 

Cauchy-Riemann equations which under certain conditions provide the 

necessary and sufficient condition for the differentiability of a function 

of a complex variable at a point. A very important concept of analytic 

functions which is useful in many application of the complex variable 

theory. Let's discuss the concept of Cauchy's theorem. 

6.2 HOMOTOPY  

Suppose D is a connected subset of the plane such that every point of D 

is an interior point—we call such a set a region—and let C1 and C2 be 

oriented closed curves in D. We say C1 is homotopic to C2 in D if there 
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is a continuous function H : S  D, where S is the square S =  {  ( t, s )  : 

0  s, t  1 } , such that H ( t,0 )  describes C1 and H ( t,1 )  describes C2, 

and for each fixed s, the function H ( t, s )  describes a closed curve Cs in 

D. 

The function H is called a homotopy between C1 and C2. Note that if 

C1 is homotopic to C2 in D, then C2 is homotopic to C1 in D. Just 

observe that the function K ( t, s )  = H ( t,1 – s )  is a homotopy. 

It is convenient to consider a point to be a closed curve. The point c is a 

described by a constant function  ( t )  = c. We thus speak of a closed 

curve C being homotopic to a constant—we sometimes say C is 

contractible to a point. 

Emotionally, the fact that two closed curves are homotopic in D means 

that one can be continuously deformed into the other in D. 

 

Figure : Diagram showing Homotopy 

Example: Let D be the annular region D = { z : 1 < |z| < 5 } . Suppose C1 

is the circle described by 1 ( t )  = 2ei2t, 0  t  1; and C2 is the circle 

described by 2 ( t )  = 4e , 0  t  1. Then H ( t, s )  =  ( 2 + 2s ) 

ei2t is a homotopy in D between C1 and C2. Suppose C3 is the same 

circle as C2 but with the opposite orientation; that is, a description is 

given by 3 ( t )  = 4e–i2t, 0  t  1. A homotopy between C1 and C3 is 

not too easy to construct—in fact, it is not possible! The moral: 

orientation counts. From now on, the term ―closed curve‖ will mean an 

oriented closed curve. 
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Another Example 

Let D be the set obtained by removing the point z = 0 from the plane. 

Take a look at the picture. Meditate on it and convince yourself that C 

and K are homotopic in D, but  and  are homotopic in D, while K and 

 are not homotopic in D. 

 

Check Your progress-1 

1. Suppose D is a connected subset of the plane such that every point of 

D is an interior point—we call such a set a region—and let C1 and 

C2 be oriented closed ................. 

2. It is convenient to consider a point to be a closed curve. The point c is 

a described by a constant function  ( t )  = c. We thus speak of a 

closed curve C being homotopic to a constant—we sometimes say C 

is ................. to a point. 

 

6.3 CAUCHY’S THEOREM   

Suppose C1 and C2 are closed curves in a region D that are homotopic in 

D, and suppose f is a function analytic on D. Let H ( t, s )  be a homotopy 

between C1 and C2. For each s, the function s ( t )  describes a closed 

curve Cs in D. Let I ( s )  be given by 

I ( s )  =  

Then,  

sC

f(z)dz.
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Now, let‘s look at the derivative of I ( s ) . We assume everything is nice 

enough to allow us to differentiate under the integral: 

 I‘ ( s )   =  

 =  

 =   

 =  

 = f ( H ( 1, s )  )   – f ( H ( 0, s )  )   

But we know each H ( t, s )  describes a closed curve, and so H ( 0, s )  = 

H ( 1, s )  for all s. Thus, 

 

which means I ( s )  is constant! In particular, I ( 0 )  = I ( 1 ) , or 

 

This is a big deal. We have shown that if C1 and C2 are closed curves in 

a region D that are homotopic in D, and f is analytic on D, then  

 

An easy corollary of this result is the celebrated Cauchy‘s Theorem, 

which says that if f is analytic on a simply connected region D, then for 

any closed curve C in D,  

In court testimony, one is admonished to tell the truth, the whole truth, 

and nothing but the truth. Well, so far in this chapter, we have told the 

truth, but we have not quite told the whole truth. We assumed all sorts of 

continuousm derivatives in the preceding discussion. These are not 

1

0

H(t,s)
I(s) f(H(t,s)) dt.

t






1

0

d H(t,s)
f(H(t,s)) dt

ds t

 
 

 


1 2

0

H(t,s) H(t,s) H(t,s)
f '(H(t,s)) f(H(t,s)) dt

t t s t

   
 

    


1 2

0

H(t,s) H(t,s) H(t,s)
f '(H(t,s)) f(H(t,s)) dt

t t t s

   
 

    


1

0

H(t,s)
f(H(t,s)) dt

t s

  
   



H(1,s)

s





H(0,s)
.

s





H(1,s) H(0,s)
I'(s) f(H(1,s)) f(H(0,s)) 0.

s s

 
  

 

1 2C C

f(z)dz f(z)dz 

1 2

( ) ( ) .
C C

f z dz f z dz 

C

f(z)dz 0.
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always necessary—specifically, the results can be proved true without all 

our smoothness assumptions—think about approximation. 

Example:  

Look at the picture below and convince yourself that the path C is 

homotopic to the closed path consisting of the two curves C1 and C2 

together with the line L. We traverse the line twice, once from C1 to C2 

and once from C2 to C1. 

Observe then that an integral over this closed path is simply the sum of 

the integrals over C1 and C2, since the two integrals along L, being in 

opposite directions, would sum to zero. Thus, if f is analytic in the region 

bounded by these curves  ( the region with two holes in it ) , then we 

know that 

 

Check Your progress-2 

3. Emotionally, the fact that two closed curves are ................. in D 

means that one can be continuously deformed into the other in D. 

4. If f is analytic in the region bounded by these curves  ( the region 

with two holes in it ) , then we know that ................. 

6.4 LET US SUM UP     

Suppose D is a connected subset of the plane such that every point of D 

is an interior point—we call such a set a region—and let C1 and C2 be 

oriented closed curves in D. We say C1 is homotopic to C2 in D if there 

is a continuous function H : S  D, where S is the square S =  {  ( t, s )  : 

0  s, t  1 } , such that H ( t,0 )  describes C1 and H ( t,1 )  describes C2, 

and for each fixed s, the function H ( t, s )  describes a closed curve Cs in 

D. The function H is called a homotopy between C1 and C2. Note that if 

C1 is homotopic to C2 in D, then C2 is homotopic to C1 in D. Just 

observe that the function K ( t, s )  = H ( t,1 – s )  is a homotopy. 

1 2C C C

f(z)dz f(z)dz f(z)dz.   
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It is convenient to consider a point to be a closed curve. The point c is a 

described by a constant function  ( t )  = c. We, thus, speak of a closed 

curve C being homotopic to a constant—we sometimes say C is 

contractible to a point. Emotionally, the fact that two closed curves are 

homotopic in D means that one can be continuously deformed into the 

other in D. Suppose C1 and C2 are closed curves in a region D that are 

homotopic in D, and suppose f is a function analytic on D. Let H ( t, s )  

be a homotopy between C1 and C2. For each s, the function s ( t )  

describes a closed curve Cs in D. Let I ( s )  be given by I ( s )  =  

 

6.5 KEYWORDS 

Homotopy: The function H is called a homotopy between C1 and C2. 

Note that if C1 is homotopic to C2 in D, then C2 is homotopic to C1 in 

D. Just observe that the function K ( t, s )  = H ( t,1 – s )  is a homotopy. 

Contractible: It is convenient to consider a point to be a closed curve. 

The point c is a described by a constant function ( t )  = c. We thus 

speak of a closed curve C being homotopic to a constant—we sometimes 

say C is contractible to a point. 

Cauchy’s Theorem: Suppose C1 and C2 are closed curves in a region D 

that are homotopic in D, and suppose f is a function analytic on D. Let H 

( t, s )  be a homotopy between C1 and C2. For each s, the function s ( t 

)  describes a closed curve Cs in D. Let I ( s )  be given by I ( s )  = 

 

6.6 QUESTIONS FOR REVIEW 

1. Suppose C1 is homotopic to C2 in D, and C2 is homotopic to C3 in 

D. Prove that C1 is homotopic to C3 in D. 

2. Explain how you know that any two closed curves in the plane Care 

homotopic in C. 

sC

f(z)dz.

sC

f(z)dz.
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3. A region D is said to be simply connected if every closed curve in D 

is contractible to a point in D. Prove that any two closed curves in a 

simply connected region are homotopic in D. 

4. Prove Cauchy‘s Theorem. 

5. Let S be the square with sides x = ± 100, and y = ± 100 with the 

counterclockwise orientation. Find  

6.  ( a ) Find  where C is any circle centered at z = 1 with the 

usual counterclockwise orientation:  ( t )  = 1 + Ae2it, 0  t  

1. 

  ( b ) Find  where C is any circle centered at z = –1 with the 

usual counterclockwise orientation. 

  ( c ) Find  where C is the ellipse 4x2 + y2 = 100 with the 

counterclockwise orientation. [Hint: partial fractions] 

  ( d ) Find  where C is the circle x2 – 10x + y2 = 0 with the 

counterclockwise orientation. 

7. Evaluate  where C is the circle |z| = 2 oriented 

counterclockwise. 

8. Evaluate  where C is the circle described by  ( t )  = e2it, 0 

 t  1, and n is an 

integer  1. 

9.  ( a ) Does the function f ( z )  =  have an antiderivative on the set 

of all z  0? Explain. 

  ( b ) How about f ( z )  =  , n an integer  1? 

10. Find as large a set D as you can so that the function  have an 

antiderivative on D. 

s

1
dz.

z

C

1
dz,

z 1

C

1
dz,

z 1

2

C

1
dz,

z – 1

2

C

1
dz,

z – 1

C

Log(z 3)dz,

n

C

1
dz

z

1

z

n

1

z
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11. Explain how you know that every function analytic in a simply 

connected region D is the derivative of a function analytic in D. 

 

6.7 SUGGESTED READINGS AND 

REFERENCES 

21. Thomas W Judson  ( 2013 ) . Abstract Algebra: Theory and 

Applications. Orthogonal Publishing. 

22. Paul B. Garrett  ( 2007 ) . Abstract Algebra. Chapman and Hall/CRC. 

23. Vijay K Khanna  ( 2017 ) .A Course in Abstract Algebra Fifth 

Edition. Vikas Publishing House  

24. Mitchell and Mitchell  ( 2007 ) . An Introduction to Abstract Algebra. 

Wadsworth Publishing 

25. John B. Fraleigh  ( 2003 ) . An Introduction to Abstract Algebra  ( 

Relevant Portion ) .Pearson Education 

 

6.8 ANSWERS TO CHECK YOUR 

PROGRESS 

1. curves in D ( answer for Check your Progress-1 Q.1 )   

2. contractible ( answer for Check your Progress-1 Q.2 )  

3. homotopic ( answer for Check your Progress-2 Q.3 )   

4.  ( answer for Check your Progress-2 Q.4 )  

 

 

1 2C C C

f(z)dz f(z)dz f(z)dz.   
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UNIT - 7: SYLOW’S THEOREMS 

STRUCTURE 

7.0 Objectives 

7.1 Introduction 

7.2 The Sylow Theorems 

7.2.1 A Proof of Sylow‘s Theorems 

7.3 Let Us Sum Up 

7.4 Keywords 

7.5 Questions For Review 

7.6 Suggested Readings And References 

7.7 Answers To Check Your Progress 

7.7 OBJECTIVES 

After studying this unit, you should be able to: 

 Discuss Sylow‘s Theorem  

 Describe examples of Sylow‘s theorem 

7.8 INTRODUCTION 

We already know that the converse of Lagrange‘s Theorem is false. If G 

is a group of order m and n divides m, then G does not necessarily 

possess a subgroup of order n. For example, A4 has order 12 but does not 

possess a subgroup of order 6. However, the Sylow Theorems do provide 

a partial converse for Lagrange‘s Theorem: in certain cases they 

guarantee us subgroups of specific orders. These theorems yield a 

powerful set of tools for the classification of all finite non-abelian 

groups. 

7.9 THE SYLOW THEOREMS  

We will use the idea of group actions to prove the Sylow Theorems. 

Recall for a moment what it means for G to act on itself by conjugation 
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and how conjugacy classes are distributed in the group according to the 

class equation. A group G acts on itself by conjugation via the map  ( g, x 

)   gxg-1. Let x1,...,xk be representatives from each of the distinct 

conjugacy classes of G that consist of more than one element. Then the 

class equation can be written as 

|G| = |Z ( G ) | + [G : C ( x1 ) ] + ... + [G : C ( xk ) ], 

where Z ( G )  =  { g  G : gx = xg for all x  G }  is the center of G and 

C ( xi )  =  { g  G : gxi = xig }  is the centralizer subgroup of xi. 

We now begin our investigation of the Sylow Theorems by examining 

subgroups of order p, where p is prime. A group G is a p-group if every 

element in G has as its order a power of p, where p is a prime number. A 

subgroup of a group G is a p-subgroup if it is a p-group. 

7.2.1 A Proof of Sylow’s Theorems 

In this handout, we give proofs of the three Sylow theorems which are 

slightly different from the ones in the book. Recall the following lemma: 

Lemma: Let p be a prime number, and let G be a p-group  ( a finite 

group of order pk for some k  1 )  acting on a finite set S. Then the 

number of fixed points of the action is congruent to |S| modulo p. 

We make the following definition: if G has order pkm with p   m, a 

Sylow p-subgroup of G is a subgroup of order pk. 

Theorem  ( Sylow’s First Theorem ) : If G is a finite group of order n = 

pkm with p prime and p  m, then G has a subgroup of order pk. In other 

words, if Sylp ( G )  denotes the set of Sylow p-subgroups of G, then 

Sylp ( G )   . 

Proof. The proof is by induction on |G|, the base case |G| = 1 being 

trivial. If there exists a proper subgroup H of G such that p   [G : H], 

then a Sylow p-subgroup of H is also a a Sylow p-subgroup of G and 

we‘re finished by induction. So without loss of generality, we may 

assume that p | [G : H] whenever H < G. From the class equation, it 

follows that p | |ZG|. By Cauchy‘s theorem, there exists a subgroup N  

|

|

0

|
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ZG of order p, which is necessarily normal in G. Let  = 

G/N, so | | = pk–1m. By induction,  has a subgroup  of order pk–1. 

Let P be the subgroup of G containing N which corresponds to  by the 

first isomorphism theorem. Then 

|P| = |P/N| . |N| = pk–1 . p = pk, 

so that P is a Sylow p-subgroup of Gas desired. 

Theorem  ( Sylow’s Second Theorem ) : If G is a finite group and p is a 

prime number, then all Sylow p-subgroups of G are conjugate to one 

another. 

Proof: We show more precisely that if H is any subgroup of G of p-

power order and P is any Sylow p-subgroup of G, then there exists x  G 

such that H  xPx–1.  ( This implies the theorem, since if H  Sylp ( G )  

then |H| = |P| = |xPx–1|, which implies that H = xPx–1, so that H is 

conjugate to P. )  Note that H acts on G/P  ( the set of left cosets of P in 

G )  by left multiplication. Let Fix denote the elements of G/P fixed by 

this action. Then |Fix|  |G/P|  ( mod p )  by the Lemma. Since p  m = 

|G/P|, |Fix|  0, and thus Fix  ;. Let xP be a left coset fixed by the 

action. Then hxP = xP h  H  x–1 Hx  P, 

so that H  xPx–1 as desired. 

Theorem  ( Sylow’s Third Theorem ) : If G is a finite group and p is a 

prime number, let 

np = |Sylp ( G ) |. Then np | |G| and np  1  ( mod p ) . 

Proof: We consider the action of G on Sylp ( G )  by conjugation. By the 

second Sylow theorem, this action is transitive, so there is just one orbit. 

Hence np, which is the size of this orbit, divides |G|. 

To prove the congruence np  1  ( mod p ) , we fix a Sylow p-subgroup P 

 Sylp ( G )  and consider the action of P on Sylp ( G )  by conjugation. 

Let Fix denote the set of fixed points of this action. Note that Q  Fix  

P  NG ( Q ) , and in particular P  Fix. If Q  Fix, then P, Q  NG ( Q )  

are both Sylow p-subgroups of NG ( Q ) , so they are conjugate in NG ( 

G

G G

P

|

0


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Q )   ( again by the second Sylow theorem ) . But Q is a normal subgroup 

of NG ( Q ) , so P = Q. Thus Fix =  { P } , and in particular |Fix| = 1. By 

the Lemma, np  1  ( mod p )  as desired. 

The more precise fact established in our proof of Sylow‘s Second 

Theorem yields the following useful result: 

Corollary: If G is a finite group and p is a prime number, then any 

subgroup of G of p-power order is contained in some Sylow p-subgroup. 

Since G acts transitively by conjugation on Sylp ( G ) , and the stabilizer 

of P  Sylp ( G )  is NG ( P ) , we deduce that np = [G : NG ( P ) ] for 

any P  Sylp ( G ) . 

Therefore: 

Corollary: If G is a finite group and p is a prime number, let np be the 

number of Sylow p-subgroups of G. Then the following are equivalent: 

1. np = 1. 

2. Every Sylow p-subgroup of G is normal. 

3. Some Sylow p-subgroup of G is normal. 

Example: By direct computation, find the number of Sylow 3-subgroups 

and the number of Sylow 5-subgroups of the symmetric group S5. Check 

that your calculations are consistent with the Sylow theorems.  

Solution: In S5 there are  (  5 · 4 · 3  )  / 3 = 20 three cycles. These will 

split up into 10 subgroups of order 3. This number is congruent to 1 mod 

3, and is a divisor of 5 · 4 · 2.  

There are  (  5!  )  / 5 = 24 five cycles. These will split up into 6 

subgroups of order 5. This number is congruent to 1 mod 5, and is a 

divisor of 4 · 3 · 2.  

Example: How many elements of order 7 are there in a simple group of 

order 168?  

Solution: First, 168 = 23 . 3 . 7. The number of Sylow 7-subgroups must 

be congruent to 1 mod 7 and must be a divisor of 24. The only 

possibilities are 1 and 8. If there is no proper normal subgroup, then the 
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number must be 8. The subgroups all have the identity in common, 

leaving 8 · 6 = 48 elements of order 7.  

Example: Prove that a group of order 48 must have a normal subgroup of 

order 8 or 16.  

Solution: The number of Sylow 2-subgroups is 1 or 3. In the first case 

there is a normal subgroup of order 16. In the second case, let G act by 

conjugation on the Sylow 2-subgroups. This produces a homomorphism 

from G into S3. Because of the action, the image cannot consist of just 2 

elements. On the other hand, since no Sylow 2-subgroup is normal, the 

kernel cannot have 16 elements. The only possibility is that the 

homomorphism maps G onto S3, and so the kernel is a normal subgroup 

of order 48 / 6 = 8.  

Example: Let G be a group of order 340. Prove that G has a normal 

cyclic subgroup of order 85 and an abelian subgroup of order 4.  

Solution: First, 340 = 22 . 5 . 17. There exists a Sylow 2-subgroup of 

order 4, and it must be abelian. No divisor of 68 = 22 . 17 is congruent to 

1 mod 5, so the Sylow 5-subgroup is normal. Similarly, then Sylow 17-

subgroup is normal. These subgroups have trivial intersection, so their 

product is a direct product, and hence must be cyclic of order 85 = 5 . 17. 

The product of two normal subgroups is again normal, so this produces 

the required normal subgroup of order 85.  

Example: Show that there is no simple group of order 200.  

Solution: Since 200 = 23 . 52, the number of Sylow 5-subgroups is 

congruent to 1 mod 5 and a divisor of 8. Thus there is only one Sylow 5-

subgroup, and it is a proper nontrivial normal subgroup.  

Example: Show that a group of order 108 has a normal subgroup of order 

9 or 27.  

Solution: Let S be a Sylow 3-subgroup of G. Then [G:S] = 4, since |G| = 

22 33, so we can let G act by multiplication on the cosets of S. This 

defines a homomorphism µ : G -> S4, so it follows that | µ ( G )  | is a 

divisor of 12, since it must be a common divisor of 108 and 24. Thus | 
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ker ( µ )  |  9, and it follows that ker ( µ )   S, so | ker ( µ )  | must be a 

divisor of 27. It follows that | ker ( µ )  | = 9 or | ker ( µ )  | = 27.  

Example: If p is a prime number, find all Sylow p-subgroups of the 

symmetric group Sp.  

Solution: Since |Sp| = p!, and p is a prime number, the highest power of 

p that divides |Sp| is p. Therefore, the Sylow p-subgroups are precisely 

the cyclic subgroups of order p, each generated by a p-cycle. There are  ( 

p-1 ) ! = p! / p ways to construct a p-cycle  ( a1, . . . , ap ) . The subgroup 

generated by a given p-cycle will contain the identity and the p-1 powers 

of the cycle. Two different such subgroups intersect in the identity, since 

they are of prime order, so the total number of subgroups of order p in Sp 

is  ( p-2 ) ! =  ( p-1 ) ! /  ( p-1 ) .  

Example: Prove that if G is a group of order 56, then G has a normal 

Sylow 2-subgroup or a normal Sylow 7-subgroup.  

Solution: The number of Sylow 7-subgroups is either 1 or 8. Eight 

Sylow 7-subgroups would yield 48 elements of order 7, and so the 

remaining 8 elements would constitute the  ( unique )  Sylow 2-

subgroup.  

Example: Prove that if N is a normal subgroup of G that contains a 

Sylow p-subgroup of G, then the number of Sylow p-subgroups of N is 

the same as that of G.  

Solution: Suppose that N contains the Sylow p-subgroup P. Then since 

N is normal it also contains all of the conjugates of P. But this means that 

N contains all of the Sylow p-subgroups of G, since they are all 

conjugate. We conclude that N and G have the same number of Sylow 

p-subgroups.  

Example: Prove that if G is a group of order 105, then G has a normal 

Sylow 5-subgroup and a normal Sylow 7-subgroup.  

Solution: The notation np ( G )  will be used for the number of Sylow p-

subgroups of G. Since 105 = 3 · 5 · 7, we have n3 ( G )  = 1 or 7, n5 ( G )  

= 1 or 21, and n7 ( G )  = 1 or 15 for the numbers of Sylow subgroups. 

Let P be a Sylow 5-subgroup and let Q be a Sylow 7-subgroup. At least 



Notes   

108 

one of these subgroups must be normal, since otherwise we would have 

21 · 4 elements of order 5 and 15 · 6 elements of order 7. Therefore, PQ 

is a subgroup, and it must be normal since its index is the smallest prime 

divisor of |G|, so we can apply the result in the previous problem. Since 

PQ is normal and contains a Sylow 5-subgroup, we can reduce to the 

number 35 when considering the number of Sylow 5-subgroups, and thus 

n5 ( G )  = n5 ( PQ )  = 1. Similarly, since PQ is normal and contains a 

Sylow 7-subgroup, we have n7 ( G )  = n7 ( PQ )  = 1.  

Check Your progress-1 

1. A group G is a p-group of every element in G has its order a power 

of ................ 

 ( a ) g  ( b ) p 

 ( c ) g-1  ( d ) p-1 

2. If G is a finite group. Then G is p-group of and only if |G| = 

................ 

 ( a ) p-p  ( b ) pp 

 ( c ) pn  ( d ) pn 

3. Let P be a Sylow p-subgroups of a ................ G and let x have as its 

order a power of p. If 

x-1p ( x )  = p. Then x  p. 

 ( a ) indirect  ( b ) infinite 

 ( c ) finite  ( d ) direct 

4. A subgroup of a group G is a p- ................ if it is a p-group. 

 ( a ) subgroup  ( b ) normal group 

 ( c ) infinite group  ( d ) cyclic group 

5. How many elements of order 7 are there is a simple group of order 

168. 

 ( a ) 7  ( b ) 8 

 ( c ) 9  ( d ) 48 
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7.10 LET US SUM UP     

Let G be a finite group and p a prime such that p divides the order of G. 

Then G contains a subgroup of order p.  ( First Sylow Theorem )  Let G 

be a finite group and p a prime such that pr divides |G|. 

Then G contains a subgroup of order pr.Let P be a Sylow p-subgroup of 

a finite group G and let x have as its order a power of p. 

If x-1Px = P. Then x  P. 

Let H and K be subgroups of G. The number of distinct H-conjugates of 

K is 

[H : N ( K )   H].  ( Second Sylow Theorem )  Let G be a finite group 

and p a prime dividing |G|. Then all Sylow p-subgroups of G are 

conjugate. That is, if P1 and P2 are two Sylow p-subgroups, there exists 

a g  G such that gP1g-1 = P2. 

 

7.11 KEYWORDS 

Cauchy: Let G be a finite group and p a prime such that p divides the 

order of G. Then G contains a subgroup of order p. 

First Sylow Theorem: Let G be a finite group and p a prime such that pr 

divides |G|. Then G contains a subgroup of order pr. 

 

7.12 QUESTIONS FOR REVIEW 

1. What are the order of all Sylow p-subgroups where G has order 18, 

24, 54 and 80? 

2. Find all the Sylow 3-subgroups of S4 and show that they are all 

conjugate. 

3. Show that every group of order 45 has a normal subgroup of order 

9. 



Notes   

110 

4. Let H be a Sylow p-subgroup of G. Prove that H ps the only Sylow 

p-subgroup of G contained in N ( H ) . 

5. Prove that no group of order 96 is simple. 

6. If H is normal subgroup of a finite group G and |H| = pk for some 

prime p, show that H is a contained in every Sylow p-subgroup of 

G. 
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7.14 ANSWERS TO CHECK YOUR 

PROGRESS 

 

15.  ( b )   ( answer for Check your Progress-1 Q.1 )  

16.  ( c )   ( answer for Check your Progress-1 Q.2 )  

17.  ( c )   ( answer for Check your Progress-1 Q.3 )  

18.  ( a )   ( answer for Check your Progress-1 Q.4 )  

19.  ( d )   ( answer for Check your Progress-1 Q.5 )  


